• Title/Summary/Keyword: Natural Logarithm

Search Result 74, Processing Time 0.026 seconds

An Analysis on the Naturalness of Natural Logarithm and its Educational Implication (자연로그의 자연스러움에 대한 분석과 그에 따른 교육적 시사점)

  • Park, Sun-Yong
    • Journal for History of Mathematics
    • /
    • v.32 no.3
    • /
    • pp.109-134
    • /
    • 2019
  • In order to improve the educational situation in which the natural number e and the natural logarithm are dealt with somewhat perfunctorily, this study explores the genetic process in which the natural logarithm and its base e occurred, and has an educational discussion based on that analysed process. Specifically, the study inquires into how the natural logarithm happened in relation to the quadrature of the hyperbolic curves through analysis and thought experimentation in mathematics history. Particularly, it sheds light on the role of e and the naturalness of the natural logarithm in terms of the introduction of the real number exponent. Also, this study discusses what the findings suggest educationally.

A study on the introduction of the natural logarithm by means of the quadrature of the hyperbola (쌍곡선의 구적법에 의한 자연로그의 도입에 관한 고찰)

  • Min, Se-Young;Park, Sun-Yong
    • Journal of Educational Research in Mathematics
    • /
    • v.12 no.1
    • /
    • pp.81-93
    • /
    • 2002
  • This study is on the introduction of the natural logarithm by the quadrature of the hyperbola. In School mathematics curriculum, Logarithm is introduced formally. But in that introduction, students could't know the meaning of the natural logarithm and e well. Historically, natural logarithm is related to the quadrature of the hyperbola. So in this study we consider the introduction of the natural logarithm by the means of quadrature of the hyperbola and the significance of the introduction.

  • PDF

A study for Build the Concept Image about Natural Logarithm under GeoGebra Environment (GeoGebra 환경에서 정적분을 이용한 자연로그의 개념이미지 형성 학습 개선방안)

  • Lee, Jeong-Gon
    • Journal for History of Mathematics
    • /
    • v.25 no.1
    • /
    • pp.71-88
    • /
    • 2012
  • The purpose of this study is to find the way to build the concept image about natural logarithm and the method is using definite integral in calculus under GeoGebra environment. When the students approach to natural logarithm, need to use dynamic program about the definite integral in calculus. Visible reasoning process through using dynamic program(GeoGebra) is the most important part that make the concept image to students. Also, for understand mathematical concept to students, using GeoGebra environment in dynamic program is not only useful but helpful method of teaching and studying. In this article, about graph of natural logarithm using the definite integral, to explore process of understand and to find special feature under GeoGebra environment. And it was obtained from a survey of undergraduate students of mathmatics. Also, relate to this process, examine an aspect of students, how understand about connection between natural logarithm and the definite integral, definition of natural logarithm and mathematical link of e. As a result, we found that undergraduate students of mathmatics can understand clearly more about the graph of natural logarithm using the definite integral when using GeoGebra environment. Futhermore, in process of handling the dynamic program that provide opportunity that to observe and analysis about process for problem solving and real concept of mathematics.

A Study on the Understanding and Errors of the Logarithmic Function in High School Students (고등학교 학생들의 로그함수에 대한 이해도 및 오류에 관한 연구)

  • 이경숙;김승동
    • Journal of the Korean School Mathematics Society
    • /
    • v.5 no.1
    • /
    • pp.111-122
    • /
    • 2002
  • The purpose of this study was to examine high school second graders' understanding of the basic nature of logarithm, the major type of error they made about logarithmic function and the cause of such an error, and to seek ways to instruct it better. For that purpose, three research questions were posed: 1. Investigate how much high school students in their second year comprehend the nature of logarithm. 2. Analyze what type of error they make about logarithmic function. 3. Analyze the cause of their error according to the selected error models and how it could be taught more efficiently. The findings of this study were as below: First, the natural science students had a better understanding of the basic nature of logarithm than the academic students. What produced the widest gap between the two groups' understanding was applying the nature of logarithm to the given problems, and what caused the smallest gap was the definition of logarithm and the condition of base. Second, the academic students had a poorer understanding of the basic nature of logarithmic function graph and of applying the nature of logarithm to the given problems. Third, the natural science students didn't comprehend well the basic nature of logarithmic function graph, the nature of characteristics and mantissa. Fourth, for all the students from academic and natural science courses, the most common errors were caused by the poor understanding of theorem or nature of the [E4] model. Fifth, the academic students made more frequent errors due to the unfamiliar signs of the [El] model, the imperfect understanding of theorem or nature of the [E4] model, and the technical part of the [E6] model. Sixth, the natural science students made more frequent errors because of the improper problem interpretation of the [E2] model and the logically improper inference of the [E3] model.

  • PDF

ANALYSIS OF POSSIBLE PRE-COMPUTATION AIDED DLP SOLVING ALGORITHMS

  • HONG, JIN;LEE, HYEONMI
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.797-819
    • /
    • 2015
  • A trapdoor discrete logarithm group is a cryptographic primitive with many applications, and an algorithm that allows discrete logarithm problems to be solved faster using a pre-computed table increases the practicality of using this primitive. Currently, the distinguished point method and one extension to this algorithm are the only pre-computation aided discrete logarithm problem solving algorithms appearing in the related literature. This work investigates the possibility of adopting other pre-computation matrix structures that were originally designed for used with cryptanalytic time memory tradeoff algorithms to work as pre-computation aided discrete logarithm problem solving algorithms. We find that the classical Hellman matrix structure leads to an algorithm that has performance advantages over the two existing algorithms.

A SUPPLEMENT TO PRECISE ASYMPTOTICS IN THE LAW OF THE ITERATED LOGARITHM FOR SELF-NORMALIZED SUMS

  • Hwang, Kyo-Shin
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.6
    • /
    • pp.1601-1611
    • /
    • 2008
  • Let X, $X_1$, $X_2$, ... be i.i.d. random variables with zero means, variance one, and set $S_n\;=\;{\sum}^n_{i=1}\;X_i$, $n\;{\geq}\;1$. Gut and $Sp{\check{a}}taru$ [3] established the precise asymptotics in the law of the iterated logarithm and Li, Nguyen and Rosalsky [7] generalized their result under minimal conditions. If P($|S_n|\;{\geq}\;{\varepsilon}{\sqrt{2n\;{\log}\;{\log}\;n}}$) is replaced by E{$|S_n|/{\sqrt{n}}-{\varepsilon}{\sqrt{2\;{\log}\;{\log}\;n}$}+ in their results, the new one is called the moment version of precise asymptotics in the law of the iterated logarithm. We establish such a result for self-normalized sums, when X belongs to the domain of attraction of the normal law.

On The Size of The Subgroup Generated by Linear Factors (선형 요소에 의해 생성된 부분그룹의 크기에 관한 연구)

  • Cheng, Qi;Hwang, Sun-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.6
    • /
    • pp.27-33
    • /
    • 2008
  • Given a polynomial ${\hbar}(x){\in}F_q[x]$ of degree h, it is an important problem to determine the size of multiplicative subgroup of $\(F_q[x]/({\hbar(x))\)*$ generated by $x-s_1,\;x-s_2,\;{\cdots},\;x-s_n$, where $\{s_1,\;s_2,\;{\cdots},\;s_n\}{\sebseteq}F_q$, and for all ${\hbar}(x){\neq}0$. So far the best known asymptotic lower bound is $(rh)^{O(1)}\(2er+O(\frac{1}{r})\)^h$, where $r=\frac{n}{h}$ and e(=2.718...) is the base of natural logarithm. In this paper, we exploit the coding theory connection of this problem and prove a better lower bound $(rh)^{O(1)}\(2er+{\frac{e}{2}}{\log}r-{\frac{e}{2}}{\log}{\frac{e}{2}}+O{(\frac{{\log}^2r}{r})}\)^h$, where log stands for natural logarithm We also discuss about the limitation of this approach.

Analysis of flexural fatigue failure of concrete made with 100% coarse recycled and natural aggregates

  • Murali, G.;Indhumathi, T.;Karthikeyan, K.;Ramkumar, V.R.
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.291-298
    • /
    • 2018
  • In this study, the flexural fatigue performance of concrete beams made with 100% Coarse Recycled Concrete Aggregates (RCA) and 100% Coarse Natural Aggregates (NA) were statistically commanded. For this purpose, the experimental fatigue test results of earlier researcher were investigated using two parameter Weibull distribution. The shape and scale parameters of Weibull distribution function was evaluated using seven numerical methods namely, Graphical method (GM), Least-Squares (LS) regression of Y on X, Least-Squares (LS) regression of X on Y, Empherical Method of Lysen (EML), Mean Standard Deviation Method (MSDM), Energy Pattern Factor Method (EPFM) and Method of Moments (MOM). The average of Weibull parameters was used to incorporate survival probability into stress (S)-fatigue life (N) relationships. Based on the Weibull theory, as single and double logarithm fatigue equations for RCA and NA under different survival probability were provided. The results revealed that, by considering 0.9 level survival probability, the theoretical stress level corresponding to a fatigue failure number equal to one million cycle, decreases by 8.77% (calculated using single-logarithm fatigue equation) and 6.62% (calculated using double logarithm fatigue equation) in RCA when compared to NA concrete.