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LIMSUP RESULTS AND A GENERALIZED UNIFORM LIL

FOR AN LPQD SEQUENCE

Yong-Kab Choi, Kyo-Shin Hwang, and Hee-Jin Moon

Abstract. In this paper we establish some limsup results and a gener-
alized uniform law of the iterated logarithm (LIL) for the increments of
partial sums of a strictly stationary and linearly positive quadrant depen-

dent (LPQD) sequence of random variables.

1. Introduction and results

In the last years there has been growing interest in concepts of positive/nega-
tive dependence for random sequences. Lehmann [5] introduced a definition of
positive dependence:

Definition 1.1. Two random variables X and Y are said to be positive quad-
rant dependent (PQD, for short) if

P (X > x, Y > y) ≥ P (X > x)P (Y > y) for all x, y ∈ R.

A much stronger concept than PQD was considered by Esary, Proschan and
Walkup [4]:

Definition 1.2. A finite family {ξ1, . . . , ξn} of random variables is said to be
positively associated (PA, for short) if for every pair of subsets A and B of
{1, 2, . . . , n},

Cov
(
f(ξi; i ∈ A), g(ξj ; j ∈ B)

)
≥ 0

whenever f and g are coordinatewise nondecreasing and the covariance exists.
An infinite family is PA if every finite subfamily is PA.

Another notion of positive dependence which is stronger than PQD and
weaker than PA, is due to Newman [7]:
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Definition 1.3. A sequence {ξj ; j ≥ 1} of random variables is said to be
linearly positive quadrant dependent (LPQD, for short) if for any disjoint finite
subsets A,B ⊂ {1, 2, . . .} and any positive rj ’s,

∑
i∈A riξi and

∑
j∈B rjξj are

PQD.

Recently, Li and Wang [6] obtained the following law of the iterated loga-
rithm for an LPQD random sequence (cf. Theorem A below).

Let {ξj , j ≥ 1} be a strictly stationary LPQD sequence with Eξ1 = 0 and
Eξ21 > 0, which satisfies conditions

(i) E|ξ1|p < ∞ for p > 2,
(ii) u(n) :=

∑∞
j=n+1 Cov(ξ1, ξj) = O(n−λ) for some λ > 2, where n ≥ 1,

(iii) σ2 := Eξ21 + 2
∑∞

j=2 Cov(ξ1, ξj) < ∞.

Define a sum and the increments of partial sums of the sequence {ξj}, re-
spectively, as follows:

S(x) =

[x]∑
j=1

ξj , S(0) = 0 and Su(t) =

[u+t]∑
k=[u]+1

ξk, u ≥ 0, t ≥ 1,

where [x] denotes the integer part of x ≥ 1. Observe that S0(x) = S(x).

Theorem A. Let {ξj , j ≥ 1} be a strictly stationary LPQD sequence with
Eξ1 = 0 and Eξ21 > 0, which satisfies conditions (i)-(iii) above. Then

(1.1) lim sup
n→∞

S(n)√
2σ2n log log n

= 1 a.s.

In this paper, we establish some limsup results and a generalized uniform
law of the iterated logarithm (LIL) for the increments of the partial sums of a
strictly stationary and linearly positive quadrant dependent (LPQD) sequence
of random variables, which extend and generalize the inspiring result Theorem
A due to Li and Wang [6]. On the other hand, we consider similar results as in
Choi [1] for linearly negative quadrant dependent (LNQD) random sequences
under another conditions.

Throughout the paper, let {ξj , j ≥ 1} be a strictly stationary LPQD se-
quence with Eξ1 = 0 and Eξ21 > 0, which satisfies conditions (i)-(iii) above.
Assume that

σ(t) :=
√
E S2

u(t) > 0, ∀u ≥ 0,

is a nondecreasing continuous and regularly varying function of t ≥ 1 with
exponent α at ∞ for some 0 < α < 1.

A positive functionR(t) of t > 0 is said to be regularly varying with exponent
α > 0 at b ≥ 0 if limt→b{R(xt)/R(t)} = xα for x > 0.

Recall that a function L(t) of t > 0 is said to be slowly varying at b ≥ 0
if limt→b{L(xt)/L(t)} = 1 for x > 0. Thus we can write the regularly varying
function R(t) as R(t) = tαL(t).
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Let {ξj , j ≥ 1} be a strictly stationary LPQD sequence with Eξ1 = 0,
Eξ21 > 0 and condition (iii). Yang and Wang [8] proved

(1.2) lim
n→∞

σ2(n)

n
= σ2.

By this relation (1.2), we ensure that σ(n) ≈ σ
√
n for n large enough. Hence

σ(·) is regarded as a regularly varying function with exponent α = 1/2 at ∞.
Furthermore, (1.1) can be written as

(1.3) lim sup
n→∞

S(n)

σ(n)
√
2 log log n

= 1 a.s.

under the conditions (i)-(iii).
Suppose that {an, n ≥ 1} and {bn, n ≥ 1} are positive nondecreasing se-

quences such that an ≤ bn and bn → ∞ as n → ∞. Denote

β(n) =
√
2
{
log(bn/an) + log log bn

}
,

where log x := ln(max{x, 1}). The main results are as follows:

Theorem 1.1. Let {ξj , j ≥ 1} be a strictly stationary LPQD sequence with
Eξ1 = 0 and Eξ21 > 0, which satisfies conditions (i)-(iii) above. Assume that
σ(·) is a nondecreasing continuous and regularly varying function with exponent
α at ∞ for some 0 < α < 1. Then

(1.4) lim sup
n→∞

sup
0≤i≤bn

sup
1≤j≤an

|Si(j)|
σ(an)β(n)

≤ 1 a.s.,

(1.5) lim sup
n→∞

|S(an)|
σ(an)

√
2 log log an

≤ 1 a.s.

The result (1.5) is immediate from (1.4) when i = 0 and j = an = bn.

Theorem 1.2. Let {ξj} and σ(·) be as in Theorem 1.1, and let an ≤ n. Then

(1.6) lim sup
n→∞

S(an)

σ(an)
√
2 log log an

≥ 1 a.s.

From Theorems 1.1 and 1.2 with an = bn, we have the following limsup
result:

Corollary 1.1. Under the assumptions of Theorem 1.2, we have

(1.7) lim sup
n→∞

sup
0≤i≤an

sup
1≤j≤an

|Si(j)|
σ(an)

√
2 log log an

= 1 a.s.,

(1.8) lim sup
n→∞

S(an)

σ(an)
√
2 log log an

= 1 a.s.

Taking an = n in Corollary 1.1 yields an explicit form of the generalized
uniform LIL for the increments of the partial sums of an LPQD sequence as
follows.
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Corollary 1.2 (LIL). Under the assumptions of Theorem 1.2, we have

(1.9) lim sup
n→∞

sup
0≤i≤n

sup
1≤j≤n

|Si(j)|
σ(n)

√
2 log log n

= 1 a.s.,

(1.10) lim sup
n→∞

S(n)

σ(n)
√
2 log log n

= 1 a.s.

It is clear that the result (1.10) gives (1.1) as well as (1.3) for a strictly
stationary LPQD sequence by the viewpoint of (1.2).

2. Proofs

In this section, let c denote a positive constant which may take different
values whenever it appears in different lines. We need the following properties:

(P1) Two random variablesX and Y are PQD if and only if Cov
(
f(X), g(Y )

)
≥ 0 for all real nondecreasing functions f and g (such that f(X) and g(Y ) have
finite variances) (see Lehmann [5]);

(P2) (Hoeffding equality): For any absolutely continuous functions f and g
on the real line and for any random variables X and Y satisfying Ef2(X) +
Eg2(Y ) < ∞, we have

Cov
(
f(X), g(Y )

)
=

∫ ∞

−∞

∫ ∞

−∞
f ′(x)g′(y)

{
P (X ≥ x, Y ≥ y)

− P (X ≥ x)P (Y ≥ y)
}
dxdy.

By the previous relation σ(n) ≈ σ
√
n for n large enough, the conclusion of

Lemma 2 in Li and Wang [6] can be expressed as follows:

(2.1) sup
x

∣∣∣P{S(n)
σ(n)

≤ x
}
− Φ(x)

∣∣∣ = O(n−1/5), n → ∞,

where Φ(x) = 1√
2π

∫ x

−∞ e−w2/2dw. Consequently, we have an analogue of Lem-

ma 3 in the just mentioned paper:

Lemma 2.1. Let {ξj} and σ(·) be as in Theorem 1.1. Suppose that {g(n), n ≥
1} and {nm,m ≥ 1} are positive nondecreasing sequences such that

∑∞
m=1 n

−1/5
m

< ∞. Then the following statements are equivalent:

(A)
∞∑

m=1

P
{S(nm)

σ(nm)
> g(nm)

}
< ∞,

(B)
∞∑

m=1

P
{ |S(nm)|

σ(nm)
> g(nm)

}
< ∞

and

(C)
∞∑

m=1

1

g(nm)
exp

(
− 1

2
g2(nm)

)
< ∞.
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The following lemma is useful for proving Theorem 1.1. The proof of Lemma
2.2 below is similar to that of Lemma 2.3 in Choi and Csörgő [2].

Lemma 2.2. Let D be a compact subset of Rd, d ≥ 1, with the Euclidean norm
∥ · ∥, and let {X(t); t ∈ D} be a separable and strictly stationary centered
random field indexed only by D. Suppose that

0 < Γ := sup
t∈D

√
EX2(t) < ∞ and

0 <
√
E{X(t)−X(s)}2 ≤ φ(∥t− s∥) for t ̸= s ∈ D,

where φ(h) is a nondecreasing continuous function of h > 0. Then, for any

λ > 0 and K1 > (2
√
2 + 2)

√
1 + 2d log 2, there is a constant c > 0 such that

(2.2)

P

{
sup
t∈D

|X(t)| ≥ x
(
Γ +K1

∫ ∞

0

φ(
√
d λ 2−y2

) dy
)}

≤ c
m(D)
λd

(
P
{ |X(t)|√

EX2(t)
≥ x

}
+

∞∑
n=1

2d2
n

P
{ |X(t)|√

EX2(t)
≥ x

√
1 + 2d log 2 · 2n/2

})
, x > 0,

where m(D) denotes the Lebesgue measure of D.

By Lemma 2.2, one can estimate an upper bound of the following large
deviation probability, whose proof is similar to that of Lemma 2.2 in Choi et
al. [3].

Lemma 2.3. Let θ > 1, d ≥ 1 and m ≥ l ≥ 1. Then, for any ε > 0, there
exists a positive constant cε such that

P
{

sup
0≤i≤θm

sup
1≤j≤θl

|Si(j)|
σ(θl)

≥ u
}

≤ cε θ
m−l

(
P
{ |S(θl)|

σ(θl)
≥ u

1 + ε

}
+

∞∑
n=1

2d2
n

P
{ |S(θl)|

σ(θl)
≥ u

1 + ε

√
1 + 2d log 2 · 2n/2

})
, u > 1.

Proof of Theorem 1.1. For a fixed θ > 1, let

Al,m = {n : θl−1 ≤ an ≤ θl, θm−1 ≤ bn ≤ θm},

where l and m are integers with m > l ≥ 1. Since (logw)/w is a decreasing
function of w > 1, we get

inf
n∈Al,m

β(n) ≥
{
2 log

(
(θm−1/θl) log θm−1

)}1/2
≥ θ−1

{
2 log

(
(θm/θl) log θm

)}1/2
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for sufficiently large m. Define βm,l(θ) :=
√
2 log

(
θm−l log θm

)
so that

mθm−l log θ > 1.

Since bn → ∞ as n → ∞, this is equivalent to m → ∞ by the definition of
Al,m. It follows from the regularity of σ(·) with exponent α (0 < α < 1) that

σ(an)

θ−ασ(θl)
≥ 1 as n (or l) → ∞

and hence

(2.3)

lim sup
n→∞

sup
0≤i≤bn

sup
1≤j≤an

|Si(j)|
σ(an)β(n)

≤ lim sup
m→∞

sup
n∈Al,m

sup
0≤i≤bn

sup
1≤j≤an

|Si(j)|
σ(an)β(n)

≤ θα+1 lim sup
m→∞

sup
0≤i≤θm

sup
1≤j≤θl

|Si(j)|
σ(θl)βm,l(θ)

.

Using Lemma 2.3, it follows that, for any ε > 0,

(2.4)

P
{

sup
0≤i≤θm

sup
1≤j≤θl

|Si(j)|
σ(θl)βm,l(θ)

> 1 + 2ε
}

≤ cεθ
m−l

(
P
{ |S(θl)|

σ(θl)
>

(1 + 2ε)βm,l(θ)

1 + ε

}
+

∞∑
n=1

2d2
n

P
{ |S(θl)|

σ(θl)
>

(1 + 2ε)βm,l(θ)

1 + ε

√
1 + 2d log 2 · 2n/2

})
for all large m. Now let us apply Lemma 2.1 with nm = θm, m > 1, and

g(θm) =
(1 + 2ε)βm,l(θ)

1 + ε

(
or

(1 + 2ε)βm,l(θ)

1 + ε

√
1 + 2d log 2 · 2n/2

)
.

Considering the right hand side of (2.4) and (C) of Lemma 2.1, we have

∞∑
m=2

1 + ε

(1 + 2ε)
√

2 log(θm−l log θm)
exp

(
− 1

2

(1 + 2ε

1 + ε

)2
2 log(θm−l log θm)

)
≤ c

∞∑
m=2

(θm−l log θm)−1−ε′ < ∞,

where ε′ = ε/(1 + ε), and also

∞∑
n=1

2d2
n

∞∑
m=2

exp
(
− 1

2

(1 + 2ε

1 + ε

)2
2 log(θm−l log θm)(1 + 2d log 2)2n

)
≤

∞∑
m=2

∞∑
n=1

2d2
n

exp
(
− (1 + ε′)(1 + 2d log 2)2n log(θm−l log θm)

)
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=

∞∑
m=2

∞∑
n=1

2d2
n

(θm−l log θm)−(1+ε′)(1+2d log 2)2n

≤ c
∞∑

m=2

θ−(1+ε′)(m−l)
∞∑

n=1

2d2
n

m−(1+ε′)2d(log 2)2n(log θ)−(1+ε′)

≤ c
∞∑

m=2

∞∑
n=1

2d2
n−(log2 m)2d(log 2)2n

= c
∞∑

m=2

∞∑
n=1

2d2
n(1−(log2 m) log 4)

≤ c

∞∑
m=2

∞∑
n=1

m−1−ε′2−n < ∞.

It follows from (2.4) and Lemma 2.1 that

∞∑
m=2

P
{

sup
0≤i≤θm

sup
1≤j≤θl

|Si(j)|
σ(θl)βm,l(θ)

> 1 + 2ε
}
< ∞.

Thus the Borel-Cantelli lemma yields

lim sup
m→∞

sup
0≤i≤θm

sup
1≤j≤θl

|Si(j)|
σ(θl)βm,l(θ)

≤ 1 + 2ε a.s.

This and (2.3) imply (1.4) since θ and ε are arbitrary. □

Proof of Theorem 1.2. Since an ≤ n by the assumption, it is clear that

1/
√
2 log log an ≥ 1

/√
2 log log n.

Thus, for a subsequence {nm, m ≥ 1} of {n, n ≥ 1}, we are to verify the
theorem by setting anm = nm = Nm, N > 2. For convenience, put am = anm .
The proof of (1.6) is completed if we show that

(2.5) lim sup
m→∞

S(am)

σ(am)
√
2 log log am

> 1− 4ε a.s.

for any small ε > 0. Let

Bm =

{
S(am)− S(am/2)

σ(am − am/2)
> (1− 2ε)

√
2 log log(am − am/2)

}
.

In order to apply Lemma 2.1, set g(nm) = (1−2ε)
√
2 log log(am − am/2). Now√

2 log log(am − am/2) ≈
√

2 log logNm
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for sufficiently large N . Therefore

∞∑
m=1

1

g(nm)
exp

(
−1

2
g2(nm)

)
≥ c

∞∑
m=1

exp

(
−1

2
(1− 2ε)2 log logNm

)

≥ c

∞∑
m=1

m−1+ε = ∞.

Hence by stationary and Lemma 2.1, we obtain

(2.6)

∞∑
m=1

P (Bm) = ∞.

Let

B′
m =

{
S(am)− S(am/2)

σ(am − am/2)
> (1− 3ε)

√
2 log log(am − am/2)

}
and

Um =
S(am)− S(am/2)

σ(am − am/2)
.

We will show that

(2.7) P
(
B′

m, i.o.
)
= 1.

Choose a differential function f(x) such that |f ′(x)| ≤ γ for some 0 < γ < ∞
and

(2.8)
0 ≤ I

{
x > (1− 2ε)

√
2 log log(am − am/2)

}
≤ f(x) ≤ I

{
x > (1− 3ε)

√
2 log log(am − am/2)

}
≤ 1

for any real number x. In order to prove (2.7), it is enough to show that

(2.9)
∞∑

m=1

f(Um) = ∞ a.s.

From (2.6) and (2.8), we get

(2.10)
∞∑

m=1

Ef(Um) ≥
∞∑

m=1

P (Bm) = ∞.
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By Markov inequality, we have

(2.11)

P

{ ∞∑
m=1

f(Um) <
1

2

n∑
m=1

Ef(Um)

}

≤ P

{∣∣∣∣∣
n∑

m=1

f(Um)−
n∑

m=1

Ef(Um)

∣∣∣∣∣ > 1

2

n∑
m=1

Ef(Um)

}

≤ 4Var

(
n∑

m=1

f(Um)

)/(
n∑

m=1

Ef(Um)

)2

≤ 4∑n
m=1 Ef(Um)

+
8
∑∞

m=1

∑∞
j=m+1 |Cov

(
f(Um), f(Uj)

)
|(∑n

m=1 Ef(Um)
)2 .

Noting that Um and Uj are LPQD from the definition of LPQD, and using (ii),
(P1), (P2) and the regularity of σ(·), it follows that, for large number N ,
(2.12)

∞∑
m=1

∞∑
j=m+1

|Cov
(
f(Um), f(Uj)

)
|

≤
∞∑

m=1

∞∑
j=m+1

∫ ∞

−∞

∫ ∞

−∞
|f ′(x)||f ′(y)|

(
P{Um ≥ x,Uj ≥ y}

− P{Um ≥ x}P{Uj ≥ y}
)
dxdy

≤ γ2
∞∑

m=1

∞∑
j=m+1

Cov(Um, Uj)

= γ2
∞∑

m=1

Cov
(S(am)− S(am/2)

σ(am − am/2)
,

∞∑
j=m+1

S(aj)− S(aj/2)

σ(aj − aj/2)

)
≤ c

∞∑
m=1

1

σ2(am − am/2)
Cov

(
S(am)− S(am/2),

∞∑
j=m+1

{S(aj)− S(aj/2)}
)

≤ c
∞∑

m=1

am − am/2

σ2(am − am/2)
u(N (m+1)/2 −Nm/2)

≤ c
∞∑

m=1

(Nm)1−2αN−λ(m+1)/2 ≤ c
∞∑

m=1

(N2α−1+λ/2)−m < ∞.

Combining (2.10)-(2.12) and letting n → ∞ yields

P
{ ∞∑

m=1

f(Um) < ∞
}
= 0.
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This proves (2.9) and consequently (2.7). Let

Cm =

{
S(am/2)

σ(am/2)
≥ −2

√
2 log log am/2

}
.

It follows from (1.5) and (2.7) that

P (B′
m ∩ Cm, i.o.) = 1.

It is easy to see that, for N large enough,

P
{S(am)

σ(am)
> (1− 4ε)

√
2 log log am, i.o.

}
≥ P

{
Zk > (1− 3ε)

√
2 log log(am − am/2)− 2

√
2 log log am/2, i.o.

}
≥ P

{
B′

m ∩ Cm, i.o.
}
= 1.

This implies (2.5). □
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