• Title/Summary/Keyword: Natural Gas Combustion

Search Result 266, Processing Time 0.026 seconds

Development of Catalytic Combustion Boiler in Domestic Use (가정용 촉매연소 보일러 개발)

  • Kim, Ho-Yeon;Lee, Seung-Ho;Cho, Won-Ihl;Baek, Young-Soon
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.677-682
    • /
    • 2001
  • Catalytic combustion is the environmental-friendly technology, which has been applied to a variety of areas for industrial and domestic use in recent years. Accordingly, this study performed the development of the catalytic manufacturing technology for the high temperature and of the catalytic combustor in priority, which were aimed to be applied to a commercialized boiler. Paliadium(Pd) of a noble metal was used as a catalyst for the high temperature and supported on alumina($Al_[2}O_{3}$) and zirconia($ZrO_{2}$) in constant weight ratio. Activity of Pd catalysts is compared and analyzed in the catalytic combustion of natural gas. The ratio of $Pd/Al_{2}O_{3}=4$ was found to be better than any other weight ratios in activity and durability. The performance examination of catalysts and of combustion through the plate-type combustor made it possible to be developed the cylindrical-type combustor which has increased combustion area. Catalytic combustion boiler of 25,000 kcal/hr class was also developed, which had the optimum combustion condition at the nozzle of 5.95mm and the orifice of 21mm. This condition was determined through the performance experiments of catalytic combustion boiler to which the cylindrical-type catalytic combustor was applied.

  • PDF

Dynamic Performance of Natural Gas Injection Valve for Heavy-Duty CNG Dual Fuel Engine (대형 CNG 혼소 엔진용 천연가스 분사밸브 동특성 연구)

  • Kim, Yong-Rae;Choi, Young
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.9-15
    • /
    • 2017
  • Natural gas fuel has known to be very promising in terms of abundancy and economic value. Therefore it is widely treated as research topics in a variety field of production, storage and utilization. Natural gas has become one of the major sources for the power generation by using internal combustion engines(ICE). Development of natural gas fuel injection device should be preceded to realize a reliable natural gas fuel supply system for a MW class power generation reciprocating ICE. In this research, an injection valve which consists of solenoid and body part with a moving plate was designed and its dynamic performance was experimented in the engine-like environment. Displacement length and diameter of an armature and diameter of a solenoid coil were tested at former study. In this research the effect of materials of solenoid core, size of main housing inlet and supply gas pressure are examined.

Testing a Commercial Gas Engine using Synthetic Biogas (합성 바이오가스를 이용한 상용 가스엔진 발전기의 구동 특성)

  • Shim, Jae-Hoon;Hong, Seong-Gu;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.592-597
    • /
    • 2005
  • Biogas is widely accepted as one of renewable energy. Raw biogas can be used in internal combustion engines either spark ignition or diesel engines. Since the gas has relatively low calorific values, engine power also is lower than rated power values. Modified engines or biogas-specific engines have been utilized in order to increase efficiency. Recently, gas engine/generators are provided for various purposes. They are mostly for LPG or natural gas. When biogas is fueled to the gas engines, de-rating is inevitable due to its lower calorific values. Meanwhile, massively produced commercial gas engines are more competitive in terms of initial investment for engines, compared to biogas-specific engines. Then, the characteristics of the commercial engine and power generation should be understood for better operation. A 5kW gas engine/generator(natural gas) was tested for determining an allowable maximum concentration of $CO_2$ in synthetic biogas, with respect to engine stating, power generation. Experimental results indicated that about 65% of methane concentration is required to start the gas engine. At this condition, the power generated was about 3 kW. It is about 60% of the nominal power, which is similar to the ratio of calorific values.

  • PDF

COMPARATIVE STUDY OF GAS-TO-LIQUID (GTL) AS AN ALTERNATIVE FUEL USED IN A DIRECT INJECTION COMPRESSION IGNITION ENGINE

  • Wu, T.;Huang, Z.;Zhang, W.G.;Fang, J.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.421-428
    • /
    • 2007
  • This paper investigates the combustion and emission characteristics of a compression ignition engine fueled with neat and blended Shell's gas-to-liquid (GTL) fuel, which was derived from natural gas through the Fischer-Tropsch process. The experiments were conducted in a 6-cylinder DI diesel engine with pump timing settings of $6^{\circ},\;9^{\circ}\;and\;12^{\circ}$crank angle before TDC over ECE R49 and US 13-mode cycles separately and compared to a conventional diesel fuel. The results show that GTL exhibited almost the same power and torque output, improved fuel economy and effective thermal efficiency. It was found that GTL displayed lower peak in-cylinder combustion pressure and maximum heat release rate (HRR), the timings of the peak pressure and the maximum HRR were generally delayed, and the combustion durations were almost equivalent for diesel and GTL under the same speed-load condition. The results also indicate that, compared to diesel fuel, GTL blends showed a trend forward decreasing four regulated emissions simultaneously and a higher GTL fraction in blends contributing to further reductions in the emissions. In particular and on average, neat GTL significantly reduced HC, CO, NOx and PM by 16.4%, 17.8%, 18.3% and 32.4%, respectively, for all cases.

Effect of $CO_2$ dilution on Combustion Instabilities in dual premixed flame (이중 예혼합화염에서 $CO_2$ 희석이 연소불안정에 미치는 영향)

  • Lee, Kang-Yeop;Kim, Hyung-Mo;Park, Poo-Min;Hwang, O-Sik;Yang, Soo-Seok;Ko, Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.763-768
    • /
    • 2011
  • The effects of $CO_2$-dilution on combustion instability were studied in order to apply biogas in a dual lean premixed gas turbine combustor on a real-scale dual lean premixed burner head which is originally developed for Natural Gas fuel. Combustion instability is reduced by $CO_2$ dilution effect according to the result of dynamic pressure signal and phase-resolved $OH^*$ images. The reason for this is that dilution of $CO_2$ reduces heat release perturbation and increases flame volume due to reduction of the flame speed and expansion of flame surface.

  • PDF

Non-Adiabatic Flamelet Modeling for Combustion Processes of Oxy-Natural Gas Flame

  • Kim, Gun-Hong;Kim, Yong-Mo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1781-1789
    • /
    • 2005
  • In order to realistically predict the combustion characteristics of the oxy-fuel flame, the present study employs the non-adiabatic flame let approach. In this combustion model, the detailed equilibrium chemistry is utilized to accurately account for the thermal dissociation as well as to properly include the radiative cooling effects on the detailed chemistry. Numerical results indicate that the present approach has the capability to correctly capture the essential features and precise structure of the oxy-fuel flames. In this work, the detailed discussion has been made for the characteristics of oxy-fuel flames, the capability and defect of the present approach and also uncertainties of experimental data.

A study on the combustion instability in a bluffbody dump combustor (가스터빈 연소기의 화염 불안정성에 관한 연구)

  • Lee, Byeong-Jun;Preston, L.H.;Santavicca, D.A.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.1022-1029
    • /
    • 1998
  • The relation of the inlet fuel distribution, velocity, and overall equivalence ratio to the stability of a lean burning no-swirl dump combustor was examined. Premixed or partially premixed natural gas was introduced into the air stream, which flowed to the dump region through an annular inlet pipe. Inlet air was preheated upto 400 deg.C. Combustion instability was observed to occur at higher value of equivalence ratio (> 0.6) as the degree of unpremixedness was increased. Instabilities exhibited a dominant frequency of ~ 500 Hz, which corresponded to a half wave mode of combustor. CH chemiluminescence and pressure fluctuations were in-phase when combustion instabilities occurred. Acetone LIF images revealed that there was a strong fuel concentration gradient across the inlet annulus. Phase resolved OH LIF images showed that inlet fuel distribution was affected by the combustion instabilities.

Analysis of Fuel Droplet Vaporization at High-Pressure Environment (고압상태에서의 연료액적의 증발특성 해석)

  • Lee, J.C.;Kim, Y.M.
    • Journal of ILASS-Korea
    • /
    • v.1 no.1
    • /
    • pp.35-43
    • /
    • 1996
  • A vaporization model for single component fuel droplet has been developed for applying to sub- and supercritical conditions. This model can account for transient liquid heat ins and circulation effect inside the droplet, forced and natural convection, Stefan flow effect, real gas effect and ambient gas solubility into the liquid droplet in high-pressure conditions. Thermodynamic and transport properties are calculated as functions of temperature and pressure in both phases. Numerical calculations are carried out for several validation cases with the detailed experimental data. Numerical results confirm that this supercritical vaporization model is applicable to the high-pressure conditions encountered in the combustion processes of diesel engine.

  • PDF

A Study on Enhancement of Combustion Performance by Dilution of Hydrogen in Heavy-Duty Hydrogen Engine (수소기관의 수소연료의 희석에 의한 역화억제효과에 관한 연구)

  • KIM, S.Y.;KIM, Y.Y.;Kim, Y.T.;LEE, JONG T.
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.4
    • /
    • pp.348-354
    • /
    • 2004
  • Hydrogen gas has several merits such as lower ignition energy, wide flammability and shorter quenching distance. It leads to high thermal efficiency but backfire occurrence. In this study, feasibility of expansion of BFL(Back-Fire Limit) equivalence ratio and combustion characteristics by a dilution of hydrogen fuel are experimently examined by using experimental heavy duty single cylinder hydrogen fueled engine. As results, it is found that BFL equivalence ratio is expanded to rich range and torque is increased.

An Investigation of Combustion and EmissionCharacteristics in Heavy-Duty Hydrogen-CNG Engine (중대형 수소-천연가스 기관의 수소혼합율 변화에 대한 연소 및 배기특성)

  • LIM, H.S.;KIM, Y.Y.;LEE, J.T.
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.3
    • /
    • pp.276-282
    • /
    • 2003
  • A hydrogen enriched CNG engine can be stably operated at ultra lean condition and reduce emission extremely. It also has advantage to increase gradually the use of hydrogen for the coming hydrogen-energy age. In this studies, the combustion and emission characteristics of heavy-duty hydrogen-CNG engine were investigated to verify the enhancement of performance by enriched hydrogen into natural gas. The results showed that a hydrogen-CNG engine could achieve ultra lean operation and low emission, while power was reduced by the decrease of intake air flow.