• Title/Summary/Keyword: Natural Degradation

Search Result 786, Processing Time 0.027 seconds

Seismic Response of Seismically-Isolated Nuclear Power Plants considering Age-related Degradation of High Damping Rubber Bearing (고감쇠고무 적층받침의 경년열화를 고려한 원전구조물의 지진응답)

  • Park, Junhee;Choun, Young-Sun;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.131-138
    • /
    • 2013
  • The high damping rubber bearings contributed to reduce a seismic force transmitted to upper structures, the material properties of rubber changes with time and the rubber with age-related degradation can affect the seismic response of structures and equipments. Therefore the seismic response of structure considering age-related degradation of isolators should be evaluated. In this paper, the stiffness and damping for isolators were defined using the aging data proposed by other researchers. The reactor containment building and the auxiliary building were selected to conduct the nonlinear analysis and the natural frequency, maximum responses, floor response spectrum(FRS) were evaluated with time using the four earthquakes with different frequency contents. According to the analysis results, the seismic responses are increased by the age-related degradation of isolators and the detail inspections should be conducted up to 20 years because it was presented that the change of FRS was high during this period.

Degradation Characteristic of Endocrine Disruptors (DEP, NP) Using Combined Advanced Oxidation Processes (AOPs) (혼합된 고급산화공정(AOPs)을 이용한 내분비계장애물질(DEP, NP)의 분해특성 연구)

  • Na, Seung-Min;Ahn, Yun-Gyong;Cui, Ming-Can;Cho, Sang-Hyun;Khim, Jee-Hyeong
    • Journal of Environmental Science International
    • /
    • v.20 no.2
    • /
    • pp.231-239
    • /
    • 2011
  • Diethyl phthalate (DEP) and nonylphenol (NP) are widely spread in the natural environment as an endocrine disruption chemicals (EDs). Therefore, in this study, ultrasound (US) and ultraviolet (UVC), including $TiO_2$, as advanced oxidation processes (AOPs) were applied to a DEP and NP contaminated solution. When only the application of US, the optimum frequency for significant DEP degradation and a high rate of hydrogen peroxide ($H_2O_2$) formation was 283 kHz. We know that the main mechanism of DEP degradation is radical reaction and, NP can be affected by both of radical reaction and pyrolysis through only US (sonolysis) process and combined US+UVC (sonophotolysis) process. At combined AOPs (sonophotolysis/sonophotocatalysis) such as US+UVC and US+UVC+$TiO_2$, significant degradation of DEP and NP were observed. Enhancement effect of sonophotolysis and sonophotocatalysis system of DEP and NP were 1.68/1.38 and 0.99/1.17, respectively. From these results, combined sonophotocatalytic process could be more efficient system to obtain a significant DEP and NP degradation.

Production of a Recombinant Laccase from Pichia pastoris and Biodegradation of Chlorpyrifos in a Laccase/Vanillin System

  • Xie, Huifang;Li, Qi;Wang, Minmin;Zhao, Linguo
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.864-871
    • /
    • 2013
  • The recombinant strain P. pastoris GS115-lccC was used to produce laccase with high activity. Factors influencing laccase expression, such as pH, methanol concentration, copper concentration, peptone concentration, shaker rotate speed, and medium volume were investigated. Under the optimal conditions, laccase activity reached 12,344 U/L on day 15. The recombinant enzyme was purified by precipitating and dialyzing to electrophoretic homogeneity, and was estimated to have a molecular mass of about 58 kDa. When guaiacol was the substrate, the laccase showed the highest activity at pH 5.0 and was stable when the pH was 4.5~6.0. The optimal temperature for the laccase to oxidize guaiacol was $60^{\circ}C$, but it was not stable at high temperature. The enzyme could remain stable at $30^{\circ}C$ for 5 days. The recombinant laccase was used to degrade chlorpyrifos in several laccase/mediator systems. Among three synthetic mediators (ABTS, HBT, VA) and three natural mediators (vanillin, 2,6-DMP, and guaiacol), vanillin showed the most enhancement on degradation of chlorpyrifos. Both laccase and vanillin were responsible for the degradation of chlorpyrifos. A higher dosage of vanillin may promote a higher level of degradation of chlorpyrifos, and the 2-step addition of vanillin led to 98% chlorpyrifos degradation. The degradation of chlorpyrifos was faster in the L/V system ($k_{obs}$ = 0.151) than that in the buffer solution ($k_{obs}$ = 0.028).

Proteomic Analysis of Polycyclic Aromatic Hydrocarbons (PAHs) Degradation and Detoxification in Sphingobium chungbukense DJ77

  • Lee, Soo Youn;Sekhon, Simranjeet Singh;Ban, Yeon-Hee;Ahn, Ji-Young;Ko, Jung Ho;Lee, Lyon;Kim, Sang Yong;Kim, Young-Chang;Kim, Yang-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1943-1950
    • /
    • 2016
  • Polycyclic aromatic hydrocarbons (PAHs) are commonly present xenobiotics in natural and contaminated soils. We studied three (phenanthrene, naphthalene, and biphenyl) xenobiotics, catabolism, and associated proteins in Sphingobium chungbukense DJ77 by two-dimensional gel electrophoresis (2-DE) analysis. Comparative analysis of the growth-dependent 2-DE results revealed that the intensity of 10 protein spots changed identically upon exposure to the three xenobiotics. Among the upregulated proteins, five protein spots, which were putative dehydrogenase, dioxygenase, and hydrolase and involved in the catabolic pathway of xenobiotic degradation, were induced. Identification of these major multifunctional proteins allowed us to map the multiple catabolic pathway for phenanthrene, naphthalene, and biphenyl degradation. A part of the initial diverse catabolism was converged into the catechol degradation branch. Detection of intermediates from 2,3-dihydroxy-biphenyl degradation to pyruvate and acetyl-CoA production by LC/MS analysis showed that ring-cleavage products of PAHs entered the tricarboxylic acid cycle, and were mineralized in S. chungbukense DJ77. These results suggest that S. chungbukense DJ77 completely degrades a broad range of PAHs via a multiple catabolic pathway.

Screening of Dietary Fiber Degradation Enzyme for Making Sweet Potato Soju by Vacuum Distillation (감압증류법의 고구마소주 제조를 위한 식이섬유 분해효소의 선별)

  • Takamine, Kazunori;Jeon, Byung-Hun;Kim, Won-Sin
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.1
    • /
    • pp.35-39
    • /
    • 2012
  • Sweet potato soju(SPS) has been made by vacuum distillation because sweet potato contains much fibrous materials which give high density to sweet potato mash. Generally, the SPS made by vacuum distillation has soft flavors and tastes. If the viscosity of sweet potato mash could be decreased by degradation enzyme, the process and production of SPS making by the method of vacuum distillation may be simplified and easier to distil the fermented sweet potato. Because the fibrous materials of sweet potato contains pectin with methoxyl group, methanol can be produced by fibrous degradation enzyme. For appling the fiber degradation enzymes to sweet potato mash for making SPS, the enzyme should be needed to degrade fibrous material without producing methanol. Special two fibrolytic enzymes are selected from 26 kind of commercial enzymes for the simplified and easier production of sweet potato soju by vacuum distillation, The selected enzyme A and X can degrade the fibrous material pectin of sweet potato without producing methanol. Although the different companies have produced the enzymes, same cellulase has been prepared from Trichoderma. reesei. The viscosity of sweet potato mash treated by the enzymes is decreased by 3 times with comparison to the viscosity of sweet potato mash of control group. The methanol concentration in the vacuum distilled SPS treated with the enzymes is 0.16%. The concentration is similar to that of commercially distilled SPS(0.15%). The result may suggest that the selected cellulases, A and X, can be used to make SPS by vacuum distillation.

A Correlative Study on Aβ and CD95 Pathway Independent to Ca2+ Dependent Protease and Activation of Caspase Activation

  • Tuyet, Pham Thi Dieu
    • Journal of Integrative Natural Science
    • /
    • v.7 no.1
    • /
    • pp.25-38
    • /
    • 2014
  • Amyloid-${\beta}$-peptide ($A{\beta}$) is important in the pathogenesis of Alzheimer's disease (AD). Calpain ($Ca^{2+}$-dependent protease) and caspase-8 (the initiating caspase for the extrinsic, receptor-mediated apoptosis pathway) have been implicated in $AD/A{\beta}$ toxicity. We found that $A{\beta}$ promoted degradation of calpastatin (the specific endogenous calpain inhibitor); calpastatin degradation was prevented by inhibitors of either calpain or caspase-8. The results implied a cross-talk between the two proteases and suggested that one protease was responsible for the activity of the other one. In neuron-like differentiated PC12 cells, calpain promotes active caspase-8 formation from procaspase-8 via the $A{\beta}$ and CD95 pathways, along with degradation of the procaspase-8 processing inhibitor caspase-8 (FLICE)-like inhibitory protein, short isoform (FLIPS). Inhibition of calpain (by pharmacological inhibitors and by overexpression of calpastatin) prevents the cleavage of procaspase-8 to mature, active caspase-8, and inhibits FLIPS degradation in the $A{\beta}$-treated and CD95-triggered cells. Increased cellular Ca2+ per se results in calpain activation but does not lead to caspase-8 activation or FLIPS degradation. The results suggest that procaspase-8 and FLIPS association with cell membrane receptor complexes is required for calpain-induced caspase-8 activation. The results presented here add to the understanding of the roles of calpain, caspase- 8, and CD95 pathway in $AD/A{\beta}$ toxicity. Calpain-promoted activation of caspase-8 may have implications for other types of CD95-induced cell damage, and for nonapoptotic functions of caspase-8. Inhibition of calpain may be useful for modulating certain caspase-8-dependent processes.

Development of Evaluation Model of Pumping and Drainage Station Using Performance Degradation Factors (농업기반시설물 양·배수장의 성능저하 요인분석 및 성능평가 모델 개발)

  • Lee, Jonghyuk;Lee, Sangik;Jeong, Youngjoon;Lee, Jemyung;Yoon, Seongsoo;Park, Jinseon;Lee, Byeongjoon;Lee, Joongu;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.75-86
    • /
    • 2019
  • Recently, natural disasters due to abnormal climates are frequently outbreaking, and there is rapid increase of damage to aged agricultural infrastructure. As agricultural infrastructure facilities are in contact with water throughout the year and the number of them is significant, it is important to build a maintenance management system. Especially, the current maintenance management system of pumping and drainage stations among the agricultural facilities has the limit of lack of objectivity and management personnel. The purpose of this study is to develop a performance evaluation model using the factors related to performance degradation of pumping and drainage facilities and to predict the performance of the facilities in response to climate change. In this study, we focused on the pumping and drainage stations belonging to each climatic zone separated by the Korea geographical climatic classification system. The performance evaluation model was developed using three different statistical models of POLS, RE, and LASSO. As the result of analysis of statistical models, LASSO was selected for the performance evaluation model as it solved the multicollinearity problem between variables, and showed the smallest MSE. To predict the performance degradation due to climate change, the climate change response variables were classified into three categories: climate exposure, sensitivity, and adaptive capacity. The performance degradation prediction was performed at each facility using the developed performance evaluation model and the climate change response variables.

Comparison of TiO2 and ZnO catalysts for heterogenous photocatalytic removal of vancomycin B

  • Lofrano, Giusy;Ozkal, Can Burak;Carotenuto, Maurizio;Meric, Sureyya
    • Advances in environmental research
    • /
    • v.7 no.3
    • /
    • pp.213-223
    • /
    • 2018
  • Continuous input into the aquatic ecosystem and persistent structures have created concern of antibiotics, primarily due to the potential for the development of antimicrobial resistance. Degradation kinetics and mineralization of vancomycin B (VAN-B) by photocatalysis using $TiO_2$ and ZnO nanoparticles was monitored at natural pH conditions. Photocatalysis (PC) efficiency was followed by means of UV absorbance, total organic carbon (TOC), and HPLC results to better monitor degradation of VAN-B itself. Experiments were run for two initial VAN-B concentrations ($20-50mgL^{-1}$) and using two catalysts $TiO_2$ and ZnO at different concentrations (0.1 and $0.5gL^{-1}$) in a multi-lamp batch reactor system (200 mL water volume). Furthermore, a set of toxicity tests with Daphnia magna was performed to evaluate the potential toxicity of oxidation by-products of VAN-B. Formation of intermediates such as chlorides and nitrates were monitored. A rapid VAN-B degradation was observed in ZnO-PC system (85% to 70% at 10 min), while total mineralization was observed to be relatively slower than $TiO_2-PC$ system (59% to 73% at 90 min). Treatment efficiency and mechanism of degradation directly affected the rate of transformation and by-products formation that gave rise to toxicity in the treated samples.

A study on the asperity degradation of rock joint surfaces using rock-like material specimens (유사 암석 시편을 사용한 암석 절리면 돌출부 손상 연구)

  • Hong, Eun-Soo;Kwon, Tae-Hyuk;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.303-314
    • /
    • 2009
  • Image analyses for sheared joint specimens are performed to study asperity degradation characteristics with respect to the roughness mobilization of rock joints. Four different types of joint specimens, which are made of high-strength gypsum materials, are prepared by replicating the three-dimensional roughness of rock joints. About twenty jointed rock shear tests are performed at various normal stress levels. The characteristic and scale of asperity degradation on the sheared joint specimens are analyzed using the digital image analysis technique. The results show that the asperity degradation characteristic mainly depends on the normal stress level and can be defined by asperity failure and wear. The asperity degradation develops significantly around the peak shear displacement and the average amount of degraded asperities remains constant with further displacement because of new degradation of small scale asperities. The shear strength results using high-strength gypsum materials can not fully represent physical properties of each mineral particles of asperities on the natural rock joint surface. However the results of this quantitative estimation for the relationship between the peak shear displacement and the asperity degradation suggest that the characterization of asperity degradation provides an important insight into mechanical characteristics and shear models of rock joints.

Implementation of Korean TTS System based on Natural Language Processing (자연어 처리 기반 한국어 TTS 시스템 구현)

  • Kim Byeongchang;Lee Gary Geunbae
    • MALSORI
    • /
    • no.46
    • /
    • pp.51-64
    • /
    • 2003
  • In order to produce high quality synthesized speech, it is very important to get an accurate grapheme-to-phoneme conversion and prosody model from texts using natural language processing. Robust preprocessing for non-Korean characters should also be required. In this paper, we analyzed Korean texts using a morphological analyzer, part-of-speech tagger and syntactic chunker. We present a new grapheme-to-phoneme conversion method for Korean using a hybrid method with a phonetic pattern dictionary and CCV (consonant vowel) LTS (letter to sound) rules, for unlimited vocabulary Korean TTS. We constructed a prosody model using a probabilistic method and decision tree-based method. The probabilistic method atone usually suffers from performance degradation due to inherent data sparseness problems. So we adopted tree-based error correction to overcome these training data limitations.

  • PDF