• 제목/요약/키워드: Natural Coordinate

검색결과 172건 처리시간 0.026초

A CHARACTERISTICS-BASED IMPLICIT FINITE-DIFFERENCE SCHEME FOR THE ANALYSIS OF INSTABILITY IN WATER COOLED REACTORS

  • Dutta, Goutam;Doshi, Jagdeep B.
    • Nuclear Engineering and Technology
    • /
    • 제40권6호
    • /
    • pp.477-488
    • /
    • 2008
  • The objective of the paper is to analyze the thermally induced density wave oscillations in water cooled boiling water reactors. A transient thermal hydraulic model is developed with a characteristics-based implicit finite-difference scheme to solve the nonlinear mass, momentum and energy conservation equations in a time-domain. A two-phase flow was simulated with a one-dimensional homogeneous equilibrium model. The model treats the boundary conditions naturally and takes into account the compressibility effect of the two-phase flow. The axial variation of the heat flux profile can also be handled with the model. Unlike the method of characteristics analysis, the present numerical model is computationally inexpensive in terms of time and works in a Eulerian coordinate system without the loss of accuracy. The model was validated against available benchmarks. The model was extended for the purpose of studying the flow-induced density wave oscillations in forced circulation and natural circulation boiling water reactors. Various parametric studies were undertaken to evaluate the model's performance under different operating conditions. Marginal stability boundaries were drawn for type-I and type-II instabilities in a dimensionless parameter space. The significance of adiabatic riser sections in different boiling reactors was analyzed in detail. The effect of the axial heat flux profile was also investigated for different boiling reactors.

실험 데이터를 이용한 클럽 페이스 움직임 분석 프로그램 개발 (Development of a Program That Computes the Position of the Club Face Based on the Experimental Data)

  • 박진;신기훈
    • 한국운동역학회지
    • /
    • 제20권2호
    • /
    • pp.231-237
    • /
    • 2010
  • The moving trajectory of a golf ball is mainly determined by the angles of the clubface and the trajectory of the club shaft. This paper presents a computer program for analyzing the position and angles of the club while the club moves in a circular motion. For this purpose, a mathematical algorithm was developed and implemented on the experimental data(5 m and 10 m carries) using VC++ and OpenGL. A skilled female golfer(174 cm, 65 kg, 0 handicap) was participated in data collection for the short approach shots. An iron club(Titleist 52 degree, 91.5 cm length, 450 g mass), attached with five reflective markers(12 mm), was used to collect experimental data. However, exact 3D coordinates and angles of the clubface are not directly calculated from measured data. A reverse engineering platform(Minolta Vivid910 hardware and Rapidform software) was thus employed to acquire the scanned data of the clubface. The scanned data and measured data were first aligned by applying appropriate coordinate transformations, and then exact coordinates and angles of clubface could be obtained at each position during circular motion. The program(Club Motion Analysis 1.0) exports the open, heel, loft angles of the club.

상변화 물질의 용융과정에 있어서 좌표변환을 이용한 온도분포의 해석적 연구 (The finite difference analysis on temperature distribution by coordinate transformation during melting process of phase-change Material)

  • 김준근;임장순
    • 태양에너지
    • /
    • 제5권2호
    • /
    • pp.77-83
    • /
    • 1985
  • An analysis is performed to investigate the influence of the buoyancy force and the thickness variation of melting layer in the containment that is filled with phase-change Material surrounding a cylindrical heating tube during melting process. The phase-change material is assumed to be initially solid at its phase-change temperature and the remaining solid at any given time is still at the phase-change temperature and neglecting the effect of heat transfer occuring within the solid. At the start of melting process, the thickness of melting layer is assumed to be a stefan-problem and after the starting process, the change of temperature and velocity is calculated using a two dimensional finite difference method. The governing equations for velocity and temperature are solved by a finite difference method which used SIMPLE (Semi Implicit Method Pressure linked Equations) algorithm. Results are presented for a wide range of Granshof number and in accordance with the time increment and it is founded that two dimensional fluid flow occurred by natural convection decreases the velocity of melting process at the bottom of container. The larger the radius of heating tube, the higher heat transfer is occurred in the melting layer.

  • PDF

구속된 다물체 시스템의 선형화에 관한 연구 (A Linearization Method for Constrained Mechanical Systems)

  • 배대성;최진환;김선철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.893-898
    • /
    • 2004
  • This research proposes an implementation method of linearized equations of motion for multibody systems with closed loops. The null space of the constraint Jacobian is first pre multiplied to the equations of motion to eliminate the Lagrange multiplier and the equations of motion are reduced down to a minimum set of ordinary differential equations. The resulting differential equations are functions of all relative coordinates, velocities, and accelerations. Since the coordinates, velocities, and accelerations are tightly coupled by the position, velocity, and acceleration level constraints, direct substitution of the relationships among these variables yields very complicated equations to be implemented. As a consequence, the reduced equations of motion are perturbed with respect to the variations of all coordinates, velocities, and accelerations, which are coupled by the constraints. The position, velocity and acceleration level constraints are also perturbed to obtain the relationships between the variations of all relative coordinates, velocities, and accelerations and variations of the independent ones. The perturbed constraint equations are then simultaneously solved for variations of all coordinates, velocities, and accelerations only in terms of the variations of the independent coordinates, velocities, and accelerations. Finally, the relationships between the variations of all coordinates, velocities, accelerations and these of the independent ones are substituted into the variational equations of motion to obtain the linearized equations of motion only in terms of the independent coordinate, velocity, and acceleration variations.

  • PDF

쉘구조 해석을 위한 개선된 Degenerated 쉘유한요소 (Improved Degenerated Shell Finite Elements for Analysis of Shell Structures)

  • 최창근;유승운
    • 전산구조공학
    • /
    • 제3권1호
    • /
    • pp.97-107
    • /
    • 1990
  • 본 연구에서는 쉘구조물의 해석을 위한 개선된 degenerated 쉘유한요소를 제시하였다. 본 연구의 개선된 degenerated 쉘요소는 shear locking 해결에 우수한 결과를 보인 가정된 전단변형도를 사용하고, membrane locking 현상을 제거하기 위해 평면내 변형도의 구성시 감차적분을 행하며, 쉘요소자체의 거동을 보완하기위해 비적합 변위형을 선택적으로 추가하였다. 본 요소는 기존 degenerated 요소계열에서 가장 큰 문제점중의 하나인 locking 현상과 전달가능한 거짓영에너지모드가 발생하지 않으며, 조각시험도 통과한다. 본 개선된 쉘요소의 거동을 알아보기위해 다수의 예제시험을 행하였다. 수치시험결과 본 요소는 빠른 수렴성과 안정성을 보여준다.

  • PDF

상변화물질의 대류유동 및 열전달 현상에 관한 연구 (Study of Convective Flow and Heat Transfer Phenomena in the Phase Change Material)

  • 손상석;이채문;이재헌;임장순
    • 태양에너지
    • /
    • 제6권2호
    • /
    • pp.43-53
    • /
    • 1986
  • The objective of this study is to report on the characterics of convective flow and heat transfer during metling process in order to provide design information for thermal energy storage systems which use phase change material. In present study, flow and heat transfer characteristics of the Phase Change Material in the Open Top Model (O.T.M) and in the Closed Top Model (C.T.M) were studied numerically by the control volume formulation using the algebraic non-orthogonal coordinate transformation. For the calculation procedure, the physical properties of fluid are assumed to be constant except density which is linely dependent on temperature in the bouyancy term of momentum equations. At start of melting process, the thickness of melting layer is assumed from the Stefan Problem assumption. The heat transfer results of Open Top Model and Closed Top Model are compared with the parameters of Grashof number and aspect ratio. It was found that heat transfer phenomena in melted region was greatly affected by buoyancy-driven natural convection and the melting distance of Open Top Model at the upper region is greater than that of Closed Top Model.

  • PDF

접근불능지역 공간정보 구축방안에 관한 연구 (A Study on the Acquisition Scheme of North Korea Geospatial Information)

  • 박홍기
    • 한국측량학회지
    • /
    • 제27권6호
    • /
    • pp.749-760
    • /
    • 2009
  • 대북관련 사업을 위해 천연자원과 환경자원에 대한 기반정보는 절대적으로 필요한 것이다. 경제적인 목적을 위해 추진되고 있는 북한의 주요지역 정보는 물론이고 앞으로 다가올 통일을 대비하여 북한 전역에 대한 체계적이고 종합적인 공간정보의 구축이 필요한 실정이다. 북한과 남한의 공간정보는 국가공가정보기반과 연계되어 활용될 수 있는 한반도 공간정보기반에 그 뿌리를 두어야 한다. 본 연구에서는 국내외 국가들의 수치지도 좌표계와 도곽체계를 분석하여, 한반도 공간정보기반을 형성하기 위한 기초정보로서 좌표계와 도엽체계에서의 남북한 통합방안을 제시하였다.

Nonlinear formulation and free vibration of a large-sag extensible catenary riser

  • Punjarat, Ong-art;Chucheepsakul, Somchai
    • Ocean Systems Engineering
    • /
    • 제11권1호
    • /
    • pp.59-81
    • /
    • 2021
  • The nonlinear formulation using the principle of virtual work-energy for free vibration of a large-sag extensible catenary riser in two dimensions is presented in this paper. A support at one end is hinged and the other is a free-sliding roller in the horizontal direction. The catenary riser has a large-sag configuration in the static equilibrium state and is assumed to displace with large amplitude to the motion state. The total virtual work of the catenary riser system involves the virtual strain energy due to bending, the virtual strain energy due to axial deformation, the virtual work done by the effective weight, and the inertia forces. The nonlinear equations of motion for two-dimensional free vibration in the Cartesian coordinate system is developed based on the difference between the Euler's equations in the static state and the displaced state. The linear and nonlinear stiffness matrices of the catenary riser are obtained and the eigenvalue problem is solved using the Galerkin finite element procedure. The natural frequencies and mode shapes are obtained. The results are validated with regard to the reference research addressing the accuracy and efficiency of the proposed nonlinear formulation. The numerical results for free vibration and the effect of the nonlinear behavior for catenary riser are presented.

3차원 공간 좌표 시스템과 드론 영상 검출을 활용한 산사태 안식각 예측에 관한 연구 (Landslide Prediction with Angle of Repose Prediction Using 3D Spatial Coordinate System and Drone Image Detection)

  • 추용주;임수영;이승엽
    • 스마트미디어저널
    • /
    • 제12권3호
    • /
    • pp.77-84
    • /
    • 2023
  • 산림 화재는 현대의 급격한 기후 변화에 따른 대표적인 자연 재해이다. 화재로 인한 산림 훼손으로 산림 조성이 미비한 시점에 겨울철 해빙기와 폭우 등으로 산사태가 발생하는 이차적인 피해가 발생한다. 대부분 국가에서는 산림 관리를 위해 CCTV 중심의 모니터링 시스템으로 제한적인 면적만 관리하고 있다. 산사태 징후를 예측하기 위해 사전에 3차원 공간 좌표를 포함하고 있는 마커를 위험지역의 경사면에 장착한 후, 주기적인 드론 촬영으로 3차원 맵핑 및 안식각을 검출한다. 이를 위해서 마커의 인식범위 및 화각을 정의하고, 산사태 징후를 사전에 예측하는 방법을 제시하였다.

지반 종류에 따른 고정식 해상 풍력발전기 지진 하중 영향 연구 (Study on the Effect of Earthquake Loads for Fixed Offshore Wind Turbines According to Soil Type)

  • 오용운;김정기;김미선;정종훈;방조혁
    • 풍력에너지저널
    • /
    • 제14권1호
    • /
    • pp.14-20
    • /
    • 2023
  • In this study, using the commercial software Bladed developed by DNV for integrated load calculation of wind turbines, the generation of seismic waves according to soil type based on Korea's domestic regulations, and load calculation considering earthquake conditions were performed according to the IEC standard, and load in the main coordinate system of the fixed offshore wind turbine was calculated. By comparing the calculated load with the design load of the fixed offshore wind turbine, the effect of earthquake loads according to soil type on the main components of fixed offshore wind turbines was evaluated. As a result of the evaluation, when an earthquake load on a wind turbine is considered, the effect of the earthquake load is related to the natural frequency of the major components and the magnitude of the adjacent acceleration in the earthquake response spectrum, and the earthquake load differs according to soil type and may exceed the design load.