• 제목/요약/키워드: Natural Convection Heat Transfer

검색결과 446건 처리시간 0.022초

다공성 물질 안에서의 자연대류 현상에 대한 열역학적 국소평형상태 가정의 고찰 (An Investigation on Local Thermodynamic Equilibrium Assumption of Natural Convection in a Porous Medium)

  • 김인선;남진현;김찬중
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.112-117
    • /
    • 2000
  • A numerical study on natural convection in a vertical square cavity filled with a porous medium is carried out with Brinkman-Forchheimer-extended Darcy flow model, and the validity of local thermodynamic equilibrium assumption is studied. The local thermodynamic equilibrium refers to the state in which a single temperature can be used to describe a heat transfer process in a multiphase system. With this assumption, the analysis is greatly simplified because only one equation is needed to describe the heat transfer process. But prior to using this assumption, it is necessary to know in what conditions the assumption can be used. The numerical results of this study reveal that large temperature difference between fluid phase and solid phase exists near wall region, paticularily when the convection becomes dominant over conduction. And the influence of flow parameters such as fluid Rayleigh number, fluid Prandtl number, dimensionless particle diameter and conductivity ratio are investigated.

  • PDF

적층형 Heat Sink의 열저항 특성에 관한 실험적 연구 (An Experimental Study on the Thermal Resistance Characteristics of Layered Heat Sink)

  • 김종하;윤재호;권오경;이창식
    • 설비공학논문집
    • /
    • 제13권4호
    • /
    • pp.271-287
    • /
    • 2001
  • This paper has been made to investigate the thermal performance characteristics for the several types of layered aluminum heat sinks with offset-strip fin. Heat sinks with different fin height, fin length, number of fin layer and slanted fin are prepared and tested for natural convection as well as forced convection. The experimental results for layered heat sink(LHS) are compared to those for advanced pin fin heat sink (PHS) so that the appropriate heat sink can be designed or chosen according to the heating conditions. The overall heat transfer performances for LHS are almost comparable to those of PHS under natural convection, and become 1.2∼1.5 times as high as those of PHS under forced convection situation. This study shows that fin height and number of fin layer re important parameters, which have a serious influence on thermal performance for layered heat sinks.

  • PDF

부채형 공간내의 자연대류에 관한 수치해석적 연구 (A Numerical Study of Natural Convection within a Trapezoidal Enclosure)

  • 배태열;배태석;권순석
    • 설비공학논문집
    • /
    • 제4권1호
    • /
    • pp.11-19
    • /
    • 1992
  • The natural convection heat transfer within a trapezoidal enclosure with parallel cylindrical top and bottom walls at different temperatures and two adiabatic side walls are studied. A finite-difference method has been used to solve the governing equations numerically. The range of parameters studied herein are Prandtl number 0.7, aspect ratio from 0.5 to 4.0, Rayleigh number from $10^3$ to $3{\times}10^4$, enclosure tilt angle from 22.5 to 157.5 degrees. Mean and local Nusselt numbers are presented for discussing heat transfer characteristics within the enclosure. The heat balances for the hot and cold walls are differed by less than 1% for converged solutions, so these results appear to be reasonable.

  • PDF

수평격판을 갖는 정사각형 밀폐공간내에서 자연대류 유동 및 열전달 (Natural Convective Flow and Heat Transfer in a Square Enclosure with a Horizontal Partition)

  • 정인기;김점수;송동주
    • 대한기계학회논문집
    • /
    • 제17권9호
    • /
    • pp.2304-2314
    • /
    • 1993
  • Natural convective flow and heat transfer in a two-dimensional square enclosure fitted with a horizontal partition are investigated numerically. The enclosure was composed of the lower hot and the upper cold horizontal walls and the adiabatic vertical walls, and a partition was situated perpendicularly at the one vertical insulated wall. The governing equations are solved by using the finite element method with Galerkin method. The computations were carried out with the variations of length, position and thermal conductivity of the partition, and Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height with water(Pr=4.95). As the results, an oscillatory motion of natural convection is resulted in a sudden rise of overall heat transfer, but the increase of length of partition is significantly restrained the increase of Nusselt number. The maximum heat transfer was shown just before the transition of the direction of oscillating flow. An oscillatory motion of flow was perfectly shown the stability with the decrease of the length of partition and Rayleigh number. Also, the heat transfer was raised with the increase of the thermal conductivity in proportion to the increase of the length of partition. The stability and oscillation of flow are affected by the position of partition.

하나의 실린더가 회전하는 수평 환형 공간에서의 혼합 대류 (Mixed Convection in a Horizontal Annulus with a Rotating Cylinder)

  • 유주식;하대홍
    • 한국전산유체공학회지
    • /
    • 제6권3호
    • /
    • pp.1-9
    • /
    • 2001
  • Mixed convection in a horizontal annulus is considered, and the effect of a forced flow on the natural convective flow is investigated. The inner cylinder is hotter than the outer cylinder, and the outer cylinder is rotating with constant angular velocity with its axis at the center of the annulus. The unsteady streamfunction-vorticity equation is solved with a finite difference method. For the fluid with Pr=0.7, there appear flows with two eddies, one eddy, or no eddy according the Rayleigh and Reynolds numbers. The rotation of the outer cylinder reduces the heat transfer rate at the wall of the annulus. The oscillatory multicellular flow of a low Prandtl number fluid with Pr=0.01 can be effectively suppressed by the forced flow.

  • PDF

회전하고 있는 바깥쪽 실린더를 갖고 있는 수평 원주형 환형 내에서의 공기의 혼합 대류 (Mixed convection of air in a horizontal cylindrical annulus with rotating outer cylinder)

  • 유주식
    • 대한기계학회논문집B
    • /
    • 제21권4호
    • /
    • pp.551-561
    • /
    • 1997
  • Mixed convection of air in a horizontal concentric cylindrical annulus is investigated numerically. Isothermal boundary conditions are prescribed at the inner and outer cylinders, with the inner cylinder being warmer. The forced flow is induced by the outer cylinder which is rotating slowly with constant angular velocity with its axis at the center of the annulus. The effect of the forced flow on the flow pattern and heat transfer of natural convection is investigated for the annulus of (inner-cylinder radius/gap width) = 1. There appear two eddies, one eddy or no eddy according to the Rayleigh and Reynolds numbers. Map of the three flow regimes is constructed on the Ra-Re plane. (author). 28 refs., 9 figs., 2 tabs.

Vertical arrangement of coils for efficient cargo tank heating

  • Magazinovic, Gojko
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.662-670
    • /
    • 2019
  • Tanker cargo tanks are equipped with the means of raising and maintaining the cargo discharge temperature to a suitable level. In this paper, a new heating coil design is proposed and analyzed. Contrary to conventional designs, wherein the heating coils are evenly distributed over the tank bottom, the proposed design arranges the heating coils in the central part of the tank bottom, in a vertical direction. Due to the intensive cargo circulation generated, a forced convection is superimposed on a buoyancy-driven natural convection, providing a more efficient mixed convection heat transfer mechanism. Numerical simulations performed by using a finite volume method show that in the case of 7-bar steam Bunker C heavy fuel oil heating, a five-hour circulation phase average heat transfer coefficient equals 199.2 W/m2K. This result might be taken as an impetus for the more thorough experimental examination.

선택적 투과성면을 가진 직사각형 밀폐공간에서의 표면복사 및 자연대류해석 (Analysis of the Combined Surface Radiation-Natural Convection in a Rectagular Enclosure with a Selectively Transparent Wall)

  • 박대성;이택식;이준식
    • 대한설비공학회지:설비저널
    • /
    • 제16권2호
    • /
    • pp.194-203
    • /
    • 1987
  • A numerical study has been conducted on the combined radiation-natural convection heat transfer characteristics in a square cavity with a selectively transparent wall. The fluid in the cavity is assumed to be transparent to the thermal radiation. The effect of the wall emissivity is mainly considered in view of the temperature and flow fields. The comparison of the radiative heat flux and conductive heat flux variations along the isothermal wall is presented as well. The results show that the Nusselt number distribution is fairly uniform due to the com-pensative interaction of the radiation and convection heat transfer.

  • PDF

유한체적법을 이용한 밀폐공간내의 자연대류-복사열전달 해석 (Analysis of natural convection-radiation heat transfer using the finite volume method in enclosure)

  • 박광수;박경우;박희용
    • 설비공학논문집
    • /
    • 제10권1호
    • /
    • pp.95-107
    • /
    • 1998
  • Natural convection and radiation heat transfer in a square enclosure containing absorbing, emitting, and isotopically scattering(participating) media is studied numerically using the finite volume method. Various numerical methods are employed to analyze the radiative heat transfer. However, it is very difficult to choose the proper method. In present study, a finite volume method(FVM) and a discrete ordinates method(DOM) are compared in rectangular enclosure. The SIMPLER algorithm is used to solve the momentum and energy equations. Thermal and flow characteristics are investigated according to the variation of radiation parameters such as optical thickness and scattering albedo. The result shows that the accuracy and the computing time of FVM are better than those of DOM in regular geometry.

  • PDF

밑면에 열원이 존재하는 밀폐공간에서의 자연대류 (Natural Convection in a Rectangular Enclosure with Heat Sources at the Bottom)

  • 권용일;김선정;권순석
    • 설비공학논문집
    • /
    • 제3권3호
    • /
    • pp.197-205
    • /
    • 1991
  • A numerical study has been performed to investigate two dimensional natural convection heat transfer in a rectangular enclosure with heat sources of constant temperature at the bottom. Calculations were made for various dimensionless heat source lengths, W/L=0.1-0.5, and positions of heat sources at $Gr=2.57{\times}10^6$, Pr=0.71 and Ks/Kf=28.98. For various positions of heat sources, the maximum local Nusselt numbers generally show X=0.81-0.85 at the bottom and X=0.23 at the top. For various dimensionless heat source lengths, the maximum local Nusselt numbers at the bottom show W/L=0.4 for one heat source, W/L=0.2 for two heat sources with fixed centers, W/L=0.5 for two heat sources with moved centers. Finally the maximum heat transfer at the bottom exhibits in condition of W/L=0.4 for two heat sources with moved centers.

  • PDF