We first provide how to apply the global preconditioned conjugate gradient ($G{\ell}-PCG$) method with Kronecker product preconditioners to image deblurring problems with nearly separable point spread functions. We next provide a coarse-grained parallel image deblurring algorithm using the $G{\ell}-PCG$. Lastly, we provide numerical experiments for image deblurring problems to evaluate the effectiveness of the $G{\ell}-PCG$ with Kronecker product preconditioner by comparing its performance with those of the $G{\ell}-CG$, CGLS and preconditioned CGLS (PCGLS) methods.
In this study, we proposed an image quality control for an automatic exposure control (AEC) of digital radiographic imaging system and tried to analyze the performance of the AEC by various manufacturer. The subjects of the experiment were analyzed for the AEC image quality evaluation using digital radiation generators from four manufacturer such as PHILIPS, GE Healthcare, SAMSUNG Healthcare, DK Medical Solution. We used as materials for the implementation of the image quality evaluation by coins (500 won, KOMSCO, Korea). This study evaluated the performance evaluation of the AEC as image quality and exposure dose (Milliampere-seconds; mAs). The image quality evaluation was tried visual assessment by two radiologic technologists and contrast to noise (CNR) by ImageJ. The exposure dose investigated mAs on digital radiation generators. The radiographic coin images acquired 360 images based on change in the control factors of the AEC, which were kVp, the consistency of field configuration and dominant zone, sensitivity and density. As a result, there was a significant difference in the AEC performance between manufacturer. The CNR by the AEC for each manufacturer showed a difference of up to about 1.9 times. The exposed tube current by the AEC for each manufacturer showed a difference of up to about 5.8 times. It is expected that our proposed evaluation method using coins could be applied as the AEC performance evaluation method in the future.
Core algorithm of deep learning Convolutional Neural Network(CNN) shows better performance than other machine learning algorithms. However, if there is not sufficient data, CNN can not achieve satisfactory performance even if the classifier is excellent. In this situation, it has been proven that the use of transfer learning can have a great effect. In this paper, we apply two transition learning methods(freezing, retraining) to three CNN models(ResNet-50, Inception-V3, DenseNet-121) and compare and analyze how the classification performance of CNN changes according to the methods. As a result of statistical significance test using various evaluation indicators, ResNet-50, Inception-V3, and DenseNet-121 differed by 1.18 times, 1.09 times, and 1.17 times, respectively. Based on this, we concluded that the retraining method may be more effective than the freezing method in case of transition learning in image classification problem.
Journal of the Korea Society of Computer and Information
/
v.27
no.9
/
pp.41-47
/
2022
In this paper, we propose a new and simple self-supervised learning method that predicts the middle image of a face image sequence for automatic expression recognition. Automatic facial expression recognition can achieve high performance through deep learning methods, however, generally requires a expensive large data set. The size of the data set and the performance of the algorithm are tend to be proportional. The proposed method learns latent deep representation of a face through self-supervised learning using an existing dataset without constructing an additional dataset. Then it transfers the learned parameter to new facial expression reorganization model for improving the performance of automatic expression recognition. The proposed method showed high performance improvement for two datasets, CK+ and AFEW 8.0, and showed that the proposed method can achieve a great effect.
Journal of the Korea Society of Computer and Information
/
v.21
no.5
/
pp.31-40
/
2016
In this paper, we analyse the characteristics of the edge image and propose a new entropy coding optimized to the compression of the edge image. The pixel values of the edge image have the Gaussian distribution around '0', and most of the pixel values are '0'. By using this analysis, the Zero Block technique is utilized in spatial domain. And the Intra Prediction Mode of the edge image is similar to the mode of the surrounding blocks or likely to be the Planar Mode or the Horizontal Mode. In this paper, we make use of the MPM technique that produces the Intra Prediction Mode with high probability modes. By utilizing the above properties, we design a new entropy coding method that is suitable for edge image and perform the compression. In case the existing compression techniques are applied to edge image, compression ratio is low and the algorithm is complicated as more than necessity and the running time is very long, because those techniques are based on the natural images. However, the compression ratio and the running time of the proposed technique is high and very short, respectively, because the proposed algorithm is optimized to the compression of the edge image. Experimental results indicate that the proposed algorithm provides better visual and PSNR performance up to 11 times than the JPEG.
Rice plant numbers and density are key factors for yield and quality of rice grains. Precise and properly estimated rice plant numbers and density can assure high yield from rice fields. The main objective of this study was to automatically detect and count rice plants using images of usual field condition from an unmanned aerial vehicle (UAV). We proposed an automatic image processing method based on morphological operation and boundaries of the connected component to count rice plant numbers after transplanting. We converted RGB images to binary images and applied adaptive median filter to remove distortion and noises. Then we applied a morphological operation to the binary image and draw boundaries to the connected component to count rice plants using those images. The result reveals the algorithm can conduct a performance of 89% by the F-measure, corresponding to a Precision of 87% and a Recall of 91%. The best fit image gives a performance of 93% by the F-measure, corresponding to a Precision of 91% and a Recall of 96%. Comparison between the numbers of rice plants detected and counted by the naked eye and the numbers of rice plants found by the proposed method provided viable and acceptable results. The $R^2$ value was approximately 0.893.
As deep learning technology has been developed and applied to various fields, it is gradually changing from an existing single image based application to a video based application having a time base in order to recognize human behavior. However, unlike 2D CNN in a single image, 3D CNN in a video has a very high amount of computation and parameter increase due to the addition of a time axis, so improving accuracy in action recognition technology is more difficult than in a single image. To solve this problem, we investigate and analyze various techniques to improve performance in 3D CNN-based image recognition without additional training time and parameter increase. We propose a time base ensemble using the time axis that exists only in the videos and an ensemble in the input frame. We have achieved an accuracy improvement of up to 7.1% compared to the existing performance with a combination of techniques. It also revealed the trade-off relationship between computational and accuracy.
In this paper, the effect of background grey levels on the visual perception of target image displayed on CRT monitor has been investigated. The purpose of this study is to investigate the efficacy of CRT monitor as a display medium of image Information especially in medical imaging field. Tllree sets of experiments have been performed in this study : the first was to measure the luminance response of CRT monitor and to find the best fitting equation, and the second was the psychophysical experiment measuring the threshold grey level differences between the target image and the background required for visual discrimination (or various background grey levels, and the third was to develop a visual model that is predictable of the threshold grey level difference measured in the psychophysical experiment. The result of psycophysical experiment shows that the visual perception performance is significantly degraded in the range of grey levels lower than 50, which is turned out due to she low luminance change of CRT monitor in this range while human eye has been adapted lo relatively bright ambient illumination. And it Is also shown in the simulation study using the developed visual model that the dominant factor degrading the visual performance is the reflected light from the monitor surface by ambient light in general illumination condition.
International Journal of Control, Automation, and Systems
/
v.1
no.4
/
pp.495-502
/
2003
This paper focuses on the implementation of an efficient tracking method of a moving object using optimal representative blocks by way of a pan-tilt camera. The key idea is derived from the fact that when the image size of a moving object is shrunk in an image frame according to the distance between the mobile robot camera and the object in motion, the tracking performance of a moving object can be improved by reducing the size of representative blocks according to the object image size. Motion estimations using Edge Detection (ED) and Block-Matching Algorithm (BMA) are regularly employed to track objects by vision sensors. However, these methods often neglect the real-time vision data since these schemes suffer from heavy computational load. In this paper, a representative block able to significantly reduce the amount of data to be computed, is defined and optimized by changing the size of representative blocks according to the size of the object in the image frame in order to improve tracking performance. The proposed algorithm is verified experimentally by using a two degree-of- freedom active camera mounted on a mobile robot.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.49
no.3
/
pp.8-14
/
2012
Improving the speed of image processing is in great demand according to spread of high quality visual media or massive image applications such as 3D TV or movies, AR(Augmented reality). SIMD computer attached to a host computer can accelerate various image processing and massive data operations. MAMS is a multi-access memory system which is, along with multiple processing elements(PEs), adequate for establishing a high performance pipelined SIMD machine. MAMS supports simultaneous access to pq data elements within a horizontal, a vertical, or a block subarray with a constant interval in an arbitrary position in an $M{\times}N$ array of data elements, where the number of memory modules(MMs), m, is a prime number greater than pq. MAMS-PP4 is the first realization of the MAMS architecture, which consists of four PEs in a single chip and five MMs. This paper presents implementation of image processing algorithms and performance analysis for MAMS-PP16 which consists of 16 PEs with 17 MMs in an extension or the prior work, MAMS-PP4. The newly designed MAMS-PP16 has a 64 bit instruction format and application specific instruction set. The author develops a simulator of the MAMS-PP16 system, which implemented algorithms can be executed on. Performance analysis has done with this simulator executing implemented algorithms of processing images. The result of performance analysis verifies consistent response of MAMS-PP16 through the pyramid operation in image processing algorithms comparing with a Pentium-based serial processor. Executing the pyramid operation in MAMS-PP16 results in consistent response of processing time while randomly response time in a serial processor.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.