• 제목/요약/키워드: National Image Performance

검색결과 1,459건 처리시간 0.031초

k-Nearest Neighbor와 Convolutional Neural Network에 의한 제재목 표면 옹이 종류의 화상 분류 (Visual Classification of Wood Knots Using k-Nearest Neighbor and Convolutional Neural Network)

  • Kim, Hyunbin;Kim, Mingyu;Park, Yonggun;Yang, Sang-Yun;Chung, Hyunwoo;Kwon, Ohkyung;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권2호
    • /
    • pp.229-238
    • /
    • 2019
  • 목재의 결점은 생장과정에서 또는 가공 중에 다양한 형태로 발생한다. 따라서 목재를 이용하기 위해서는 목재의 결점을 정확하게 분류하여 용도에 맞는 목재 품질을 객관적으로 평가할 필요가 있다. 하지만 사람에 의한 등급구분과 수종구분은 주관적 판단에 의해 차이가 발생할 수 있기 때문에 목재 품질의 객관적 평가 및 목재 생산의 고속화를 위해서는 컴퓨터 비전을 활용한 화상분석 자동화가 필요하다. 본 연구에서는 SIFT+k-NN 모델과 CNN 모델을 통해 옹이의 종류를 자동으로 구분하는 모델을 구현하고 그 정확성을 분석해보고자 하였다. 이를 위하여 다섯 가지 국산 침엽수종으로부터 다양한 형태의 옹이 이미지 1,172개를 획득하여 학습 및 검증에 사용하였다. SIFT+k-NN 모델의 경우, SIFT 기술을 이용하여 옹이 이미지에서 특성을 추출한 뒤, k-NN을 이용하여 분류를 진행하였으며, 최대 60.53%의 정확도로 분류가 가능하였다. 이 때 k-index는 17이었다. CNN 모델의 경우, 8층의 convolution layer와 3층의 hidden layer로 구성되어있는 모델을 사용하였으며, 정확도의 최대값은 1205 epoch에서 88.09%로 나타나 SIFT+k-NN 모델보다 높은 결과를 보였다. 또한 옹이의 종류별 이미지 개수 차이가 큰 경우, SIFT+k-NN 모델은 비율이 높은 옹이 종류로 편향되어 학습되는 결과를 보였지만, CNN 모델은 이미지 개수의 차이에도 편향이 심하지 않아 옹이 분류에 있어 더 좋은 성능을 보였다. 본 연구 결과를 통해 CNN 모델을 이용한 목재 옹이의 분류는 실용가능성에 있어 충분한 정확도를 보이는 것으로 판단된다.

Himawari-8 AHI 적설 탐지의 성능 평가 (Performance Evaluation of Snow Detection Using Himawari-8 AHI Data)

  • 진동현;이경상;서민지;최성원;성노훈;이은경;한현경;한경수
    • 대한원격탐사학회지
    • /
    • 제34권6_1호
    • /
    • pp.1025-1032
    • /
    • 2018
  • 적설은 강수의 한 형태로 지표면에 쌓인 눈으로 정의되며 빙권의 가장 큰 단일 구성 요소로서 지구 표면과 대기 사이의 열 교환이나 전 지구 또는 지역적인 측면에서 지구의 에너지 수지 균형을 유지하는 중요한 역할을 하는 등 지구 표면 온도를 조절하는데 영향을 미친다. 그러나 적설은 인간의 접근이 어려운 지역에 주로 분포하기 때문에 위성을 활용한 적설 탐지가 활발히 수행되고 있으며 산림 지역의 적설 탐지는 구름과 적설의 구분 다음으로 중요한 과정이다. 따라서 본 연구는 기존 극 궤도 위성에서 산림 지역 적설 탐지에 활용하는 Normalized Difference Snow Index(NDSI) 및 Normalized Difference Vegetation Index(NDVI)를 정지궤도 위성에 적용하였으며, 산림 지역 외 영역은 적설의 분광 특징을 활용한 $R_{1.61{\mu}m}$ anomaly 기법 및 NDSI를 활용하여 적설 탐지를 수행하였다. 본 연구에서 산출한 Snow Cover 자료와 Visible Infrared Imaging Radiometer(VIIRS) Snow Cover 자료를 활용해 간접 검증을 수행한 결과, Probability of Detection(POD)는 99.95%, False Alarm Ratio(FAR)는 16.63 %로 나타났다. Himawari-8 Advanced Himawari Imager(AHI) RGB 영상을 추가로 활용해 정성적 검증 또한 수행하였으며 수행 결과, VIIRS Snow Cover가 미탐지한 영역과 본 연구가 오탐지한 영역이 혼합되어 나타났다.

Validation of Ultrasound and Computed Tomography-Based Risk Stratification System and Biopsy Criteria for Cervical Lymph Nodes in Preoperative Patients With Thyroid Cancer

  • Young Hun Jeon;Ji Ye Lee;Roh-Eul Yoo;Jung Hyo Rhim;Kyung Hoon Lee;Kyu Sung Choi;Inpyeong Hwang;Koung Mi Kang;Ji-hoon Kim
    • Korean Journal of Radiology
    • /
    • 제24권9호
    • /
    • pp.912-923
    • /
    • 2023
  • Objective: This study aimed to validate the risk stratification system (RSS) and biopsy criteria for cervical lymph nodes (LNs) proposed by the Korean Society of Thyroid Radiology (KSThR). Materials and Methods: This retrospective study included a consecutive series of preoperative patients with thyroid cancer who underwent LN biopsy, ultrasound (US), and computed tomography (CT) between December 2006 and June 2015. LNs were categorized as probably benign, indeterminate, or suspicious according to the current US- and CT-based RSS and the size thresholds for cervical LN biopsy as suggested by the KSThR. The diagnostic performance and unnecessary biopsy rates were calculated. Results: A total of 277 LNs (53.1% metastatic) in 228 patients (mean age ± standard deviation, 47.4 years ± 14) were analyzed. In US, the malignancy risks were significantly different among the three categories (all P < 0.001); however, CT-detected probably benign and indeterminate LNs showed similarly low malignancy risks (P = 0.468). The combined US + CT criteria stratified the malignancy risks among the three categories (all P < 0.001) and reduced the proportion of indeterminate LNs (from 20.6% to 14.4%) and the malignancy risk in the indeterminate LNs (from 31.6% to 12.5%) compared with US alone. In all image-based classifications, nodal size did not affect the malignancy risks (short diameter [SD] ≤ 5 mm LNs vs. SD > 5 mm LNs, P ≥ 0.177). The criteria covering only suspicious LNs showed higher specificity and lower unnecessary biopsy rates than the current criteria, while maintaining sensitivity in all imaging modalities. Conclusion: Integrative evaluation of US and CT helps in reducing the proportion of indeterminate LNs and the malignancy risk among them. Nodal size did not affect the malignancy risk of LNs, and the addition of indeterminate LNs to biopsy candidates did not have an advantage in detecting LN metastases in all imaging modalities.

인조 번호판을 이용한 자동차 번호인식 성능 향상 기법 (Improved Method of License Plate Detection and Recognition using Synthetic Number Plate)

  • 장일식;박구만
    • 방송공학회논문지
    • /
    • 제26권4호
    • /
    • pp.453-462
    • /
    • 2021
  • 자동차 번호인식을 위해선 수많은 번호판 데이터가 필요하다. 번호판 데이터는 과거의 번호판부터 최신의 번호판까지 균형 있는 데이터의 확보가 필요하다. 하지만 실제 과거의 번호판부터 최신의 번호판의 데이터를 획득하는데 어려움이 있다. 이러한 문제를 해결하기 위해 인조 번호판을 이용하여 자동차 번호판을 생성하여 딥러닝을 통한 번호판 인식 연구가 진행되고 있다. 하지만 인조 데이터는 실제 데이터와 차이가 존재하며, 이러한 문제를 해결하기 위해 다양한 데이터 증강 기법을 사용한다. 기존 데이터 증강 방식은 단순히 밝기, 회전, 어파인 변환, 블러, 노이즈등의 방법을 사용하였다. 본 논문에서는 데이터 증강 방법으로 인조데이터를 실제 데이터 스타일로 변환하는 스타일 변환 방법을 적용한다. 또한 실제 번호판 데이터는 원거리가 많고 어두운 경우 잡음이 많이 존재한다. 단순히 입력데이터를 가지고 문자를 인식할 경우 오인식의 가능성이 높다. 이러한 경우 문자인식 향상을 위해 본 논문에서는 문자인식을 위하여 화질개선 방법으로 DeblurGANv2 방법을 적용하여 번호판 인식 정확도를 높였다. 번호판 검출 및 번호판 번호인식을 위한 딥러닝의 방식은 YOLO-V5를 사용하였다. 인조 번호판 데이터 성능을 판단하기 위해 자체적으로 확보한 자동차 번호판을 수집하여 테스트 셋을 구성하였다. 스타일 변환을 적용하지 않은 번호판 검출이 0.614mAP를 기록하였다. 스타일 변환을 적용한 결과 번호판 검출 성능이 0.679mAP 기록하여 성능이 향상되었음을 확인하였다. 또한 번호판 문자인식에는 화질 개선을 하지 않은 검출 성공률은 0.872를 기록하였으며, 화질 개선 후 검출 성능이 0.915를 기록하여 성능 향상이 되었음을 확인 하였다.

Integrating UAV Remote Sensing with GIS for Predicting Rice Grain Protein

  • Sarkar, Tapash Kumar;Ryu, Chan-Seok;Kang, Ye-Seong;Kim, Seong-Heon;Jeon, Sae-Rom;Jang, Si-Hyeong;Park, Jun-Woo;Kim, Suk-Gu;Kim, Hyun-Jin
    • Journal of Biosystems Engineering
    • /
    • 제43권2호
    • /
    • pp.148-159
    • /
    • 2018
  • Purpose: Unmanned air vehicle (UAV) remote sensing was applied to test various vegetation indices and make prediction models of protein content of rice for monitoring grain quality and proper management practice. Methods: Image acquisition was carried out by using NIR (Green, Red, NIR), RGB and RE (Blue, Green, Red-edge) camera mounted on UAV. Sampling was done synchronously at the geo-referenced points and GPS locations were recorded. Paddy samples were air-dried to 15% moisture content, and then dehulled and milled to 92% milling yield and measured the protein content by near-infrared spectroscopy. Results: Artificial neural network showed the better performance with $R^2$ (coefficient of determination) of 0.740, NSE (Nash-Sutcliffe model efficiency coefficient) of 0.733 and RMSE (root mean square error) of 0.187% considering all 54 samples than the models developed by PR (polynomial regression), SLR (simple linear regression), and PLSR (partial least square regression). PLSR calibration models showed almost similar result with PR as 0.663 ($R^2$) and 0.169% (RMSE) for cloud-free samples and 0.491 ($R^2$) and 0.217% (RMSE) for cloud-shadowed samples. However, the validation models performed poorly. This study revealed that there is a highly significant correlation between NDVI (normalized difference vegetation index) and protein content in rice. For the cloud-free samples, the SLR models showed $R^2=0.553$ and RMSE = 0.210%, and for cloud-shadowed samples showed 0.479 as $R^2$ and 0.225% as RMSE respectively. Conclusion: There is a significant correlation between spectral bands and grain protein content. Artificial neural networks have the strong advantages to fit the nonlinear problem when a sigmoid activation function is used in the hidden layer. Quantitatively, the neural network model obtained a higher precision result with a mean absolute relative error (MARE) of 2.18% and root mean square error (RMSE) of 0.187%.

무인기로 취득한 RGB 영상과 YOLOv5를 이용한 수수 이삭 탐지 (Sorghum Panicle Detection using YOLOv5 based on RGB Image Acquired by UAV System)

  • 박민준;유찬석;강예성;송혜영;백현찬;박기수;김은리;박진기;장시형
    • 한국농림기상학회지
    • /
    • 제24권4호
    • /
    • pp.295-304
    • /
    • 2022
  • 본 연구는 수수의 수확량 추정을 위해 무인기로 취득한 RGB 영상과 YOLOv5를 이용하여 수수 이삭 탐지 모델을 개발하였다. 이삭이 가장 잘 식별되는 9월 2일의 영상 중 512×512로 분할된 2000장을 이용하여 모델의 학습, 검증 및 테스트하였다. YOLOv5의 모델 중 가장 파라미터가 적은 YOLOv5s에서 mAP@50=0.845로 수수 이삭을 탐지할 수 있었다. 파라미터가 증가한 YOLOv5m에서는 mAP@50=0.844로 수수 이삭을 탐지할 수 있었다. 두 모델의 성능이 유사하나 YOLOv5s (4시간 35분)가 YOLOv5m (5시간 15분)보다 훈련시간이 더 빨라 YOLOv5s가 수수 이삭 탐지에 효율적이라고 판단된다. 개발된 모델을 이용하여 수수의 수확량 예측을 위한 단위면적당 이삭 수를 추정하는 알고리즘의 기초자료로 유용하게 활용될 것으로 판단된다. 추가적으로 아직 개발의 초기 단계를 감안하면 확보된 데이터를 이용하여 성능 개선 및 다른 CNN 모델과 비교 검토할 필요가 있다고 사료된다.

반복적 재구성 알고리즘과 관전류 자동 노출 조정 기법의 CT 영상 화질과 선량에 미치는 영향: 관상동맥 CT 조영 영상 프로토콜 기반의 팬텀 실험 (Effects of Iterative Reconstruction Algorithm, Automatic Exposure Control on Image Quality, and Radiation Dose: Phantom Experiments with Coronary CT Angiography Protocols)

  • 하성민;정성희;장혁재;박은아;심학준
    • 한국의학물리학회지:의학물리
    • /
    • 제26권1호
    • /
    • pp.28-35
    • /
    • 2015
  • 본 논문에서는 반복적 구성 기법과 관전류 노출자동조절 기법이 영상의 화질과 방사선량에 미치는 영향을 관상동맥 전산화단층촬영 혈관조영 영상(coronary computed tomography angiography, CCTA)을 대상으로 팬텀 실험에 기반하여 평가하고자 한다. 이를 위하여 미국 의학물리학회(American Association of Physics in Medicine) 표준의 성능 평가 팬텀을 320 다중검출열 CT로써 촬영하였다. 80 kVp, 100 kVp, 120 kVp의 관전압에 있어서, 관전류 노출자동조절 기법은 저선량 목표 표준편차(SD=44)와 고선량(목표 표준편차=33)의 두 가지 설정으로써 촬영하였다. 재구성 변수로서는 필터보정 역투영(FBP)와 반복적 재구성 방법을 설정하여, 전부 12개의 재구성 영상을 획득하였다(12=3 (80, 100, 120 kVp)${\times}2$ (저선량(목표SD=44), 고선량(목표SD=33))${\times}2$ (필터보정역투영, 반복적 재구성). 영상의 화질은 잡음의 세기(표준편차), 변조전달함수, 대조대잡음비(CNR)에 의하여 평가하였으며, 관전압과 관전류 노출자동조절 기법에서의 목표 선량과 대소 및 재구성 기법의 선택이 화질과 방사선량에 미치는 영향을 관찰하였다. 반복적 재구성 기법은 필터보정역투영 기법보다 영상 잡음을 대폭 감소시켰으며 이는 저선량의 경우 더욱 뚜렷하였다. 즉, 잡음의 세기는 관전류 노출자동조절의 설정이 고선량 (목표SD=33)과 저선량(목표SD=44)인 경우, 각각 평균 38%와 평균 46% 감소하였다. 반복적 재구성 기법에 의하여, 변조전달 함수에 의한 공간적 해상도의 평가에 있어서 미약한 감소를 보였으나, 이로써 잡음 저감과 대조대잡음비(CNR)에 있어서의 현저한 개선을 상쇄할 정도의 영향에는 미치지 못 하였다. 결과적으로, 관상동맥 전산화단층촬영 혈관조영 영상의 획득에서 있어서, 반복적 재구성 기법과 관전류 노출자동조정 기법을 동시에 사용하는 것은 영상의 화질을 개선하면서 공간적 해상도의 저하 등 그 부작용은 최소화함으로써, 합리적으로 획득 가능한 한 최소한의 선량 (ALARA)의 원칙에 충실한 실제 임상적 효과를 의미한다고 기대할 수 있다.

연속적 부대역 양자화와 인간 시각 시스템을 이용한 디지털 워터마킹 알고리듬 (A Digital Watermarking Algorithm Using Successive Subband Quantization and Human Visual System)

  • 권성근;권기구;반성원;박경남;하인성;권기룡;이건일
    • 전자공학회논문지CI
    • /
    • 제39권2호
    • /
    • pp.45-53
    • /
    • 2002
  • 본 논문에서는 연속적 부대역 양자화와 인간 시각 시스템을 이용한 웨이브릿 기반의 디지털 워터마킹 알고리듬을 제안하였다. 이 알고리듬에서는 웨이브릿 변환을 이용하여 영상을 4-레벨로 분해한 후, 가장 낮은 레벨에 속한 최고주파 부대역들을 제외한 모든 부대역들에 대하여 시각적으로 중요한 계수들을 선택한다. 기저대역에 대한 시각적으로 중요한 계수들은 계수값들의 크기를 기준으로 선택하고, 고주파 부대역에 대한 시각적으로 중요한 계수들은 연속적 부대역 양자화를 이용하여 선택한다. 고주파 부대역에 속한 시각적으로 중요한 계수들은 각 계수들이 인간의 시각에 영향을 미치는 인간 시각 시스템을 고려하여 시각적으로 보이지 않는 크기로 워터마크를 삽입하고, 기저대역에 속한 계수들은 화질 열화가 일어나지 않는 범위로 워터마크를 삽입한다. 본 워터마킹 알고리듬의 성능 평가를 위한 모의실험에서 이 알고리듬이 기존의 알고리듬보다 비가시성과 견고성에서 모두 우수함을 확인하였다.

YOLOv5와 YOLOv7 모델을 이용한 해양침적쓰레기 객체탐지 비교평가 (A Comparative Study on the Object Detection of Deposited Marine Debris (DMD) Using YOLOv5 and YOLOv7 Models)

  • 박강현;윤유정;강종구;김근아;최소연;장선웅;박수호;공신우;곽지우;이양원
    • 대한원격탐사학회지
    • /
    • 제38권6_2호
    • /
    • pp.1643-1652
    • /
    • 2022
  • 해양생태계 및 수산자원, 해상안전에 부정적인 영향을 미치는 해양침적쓰레기는 주로 음파탐지기, 인양틀 및 잠수부를 통해 탐지되고 있다. 시간과 비용을 고려하여 최근에는 수중영상과 인공지능을 결합한 방법이 시도되고 시작했다. 본 연구에서는 효율적이고 정확한 해양침적쓰레기 탐지를 위하여, 수중영상과 딥러닝 객체탐지 모델인 You Only Look Once Version 5 (YOLOv5)와 You Only Look Once Version 7 (YOLOv7)을 학습 및 비교평가를 수행하였다. 유리, 금속, 어망, 타이어, 나무, 플라스틱 등의 객체탐지에 있어, 두 모델 모두 0.85 이상의 Mean Average Precision (mAP@0.5)를 기록하였다. 향후 영상자료 용량이 충분해지면, 보다 객관적인 성능평가 및 모델 개선이 가능할 것으로 사료된다.

의류 사이즈별 및 피부톤에 기반을 둔 의류 추천 시스템 (Suitable clothing recommendation system by size and skin color)

  • 박창영;임병찬;이원준;이창수;김민수;이상용
    • 디지털융복합연구
    • /
    • 제20권3호
    • /
    • pp.407-413
    • /
    • 2022
  • 기존 의류 추천 시스템들은 사용자 자신의 신체 촬영 사진이나 신체 사이즈를 입력한 후, 사용자가 좋아하는 의류의 종류를 선택하면 그에 적합한 사진을 보여주는 수준에 머물러 있다. 이러한 추천 시스템을 이용하여 사용자가 의류를 구매할 경우, 사용자의 신체 사이즈에 맞지 않거나 어울리지 않는 경우가 다수 발생하게 된다. 본 연구에서는 기존 의류 추천 시스템들의 이런 문제점을 해결하기 위하여 사용자가 사이즈 뿐만 아니라 피부톤을 입력받아 사용자의 신체 사이즈 뿐만 아니라 피부톤에 알맞는 의류를 추천하는 시스템을 구현하였다. 본 시스템은 의류 추천을 위해 남성 상의 8가지를 대상으로 웹 크롤링을 통해 얻은 의류의 사이즈 정보를 주기적으로 데이터베이스에 저장하고, 해당 의류 이미지의 전체 픽셀을 분석하여 색감 텍스트 값을 추출하였다. 본 시스템의 성능을 확인하기 위하여 남자 대학생 100명을 대상으로 설문 조사를 실시하였으며, 70% 수준의 만족도를 보였다. 만족하지 않는 대부분의 이유는 추천 대상 의류가 한정되어 있다고 밝혀서 추후 대상 의류의 확대가 필요할 것으로 판단된다.