DOI QR코드

DOI QR Code

Validation of Ultrasound and Computed Tomography-Based Risk Stratification System and Biopsy Criteria for Cervical Lymph Nodes in Preoperative Patients With Thyroid Cancer

  • Young Hun Jeon (Department of Radiology, Seoul National University Hospital) ;
  • Ji Ye Lee (Department of Radiology, Seoul National University Hospital) ;
  • Roh-Eul Yoo (Department of Radiology, Seoul National University Hospital) ;
  • Jung Hyo Rhim (Department of Radiology, Seoul Metropolitan Government Seoul National University Boramae Medical Cente) ;
  • Kyung Hoon Lee (Department of Radiology, Soonchunhyang University Seoul Hospital) ;
  • Kyu Sung Choi (Department of Radiology, Seoul National University Hospital) ;
  • Inpyeong Hwang (Department of Radiology, Seoul National University Hospital) ;
  • Koung Mi Kang (Department of Radiology, Seoul National University Hospital) ;
  • Ji-hoon Kim (Department of Radiology, Seoul National University College of Medicine)
  • Received : 2023.01.04
  • Accepted : 2023.07.15
  • Published : 2023.09.01

Abstract

Objective: This study aimed to validate the risk stratification system (RSS) and biopsy criteria for cervical lymph nodes (LNs) proposed by the Korean Society of Thyroid Radiology (KSThR). Materials and Methods: This retrospective study included a consecutive series of preoperative patients with thyroid cancer who underwent LN biopsy, ultrasound (US), and computed tomography (CT) between December 2006 and June 2015. LNs were categorized as probably benign, indeterminate, or suspicious according to the current US- and CT-based RSS and the size thresholds for cervical LN biopsy as suggested by the KSThR. The diagnostic performance and unnecessary biopsy rates were calculated. Results: A total of 277 LNs (53.1% metastatic) in 228 patients (mean age ± standard deviation, 47.4 years ± 14) were analyzed. In US, the malignancy risks were significantly different among the three categories (all P < 0.001); however, CT-detected probably benign and indeterminate LNs showed similarly low malignancy risks (P = 0.468). The combined US + CT criteria stratified the malignancy risks among the three categories (all P < 0.001) and reduced the proportion of indeterminate LNs (from 20.6% to 14.4%) and the malignancy risk in the indeterminate LNs (from 31.6% to 12.5%) compared with US alone. In all image-based classifications, nodal size did not affect the malignancy risks (short diameter [SD] ≤ 5 mm LNs vs. SD > 5 mm LNs, P ≥ 0.177). The criteria covering only suspicious LNs showed higher specificity and lower unnecessary biopsy rates than the current criteria, while maintaining sensitivity in all imaging modalities. Conclusion: Integrative evaluation of US and CT helps in reducing the proportion of indeterminate LNs and the malignancy risk among them. Nodal size did not affect the malignancy risk of LNs, and the addition of indeterminate LNs to biopsy candidates did not have an advantage in detecting LN metastases in all imaging modalities.

Keywords

References

  1. Stack BC Jr, Ferris RL, Goldenberg D, Haymart M, Shaha A, Sheth S, et al. American Thyroid Association consensus review and statement regarding the anatomy, terminology, and rationale for lateral neck dissection in differentiated thyroid cancer. Thyroid 2012;22:501-508 https://doi.org/10.1089/thy.2011.0312
  2. Mulla MG, Knoefel WT, Gilbert J, McGregor A, Schulte KM. Lateral cervical lymph node metastases in papillary thyroid cancer: a systematic review of imaging-guided and prophylactic removal of the lateral compartment. Clin Endocrinol (Oxf) 2012;77:126-131 https://doi.org/10.1111/j.1365-2265.2012.04336.x
  3. Mazzaferri EL, Kloos RT. Clinical review 128: Current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab 2001;86:1447-1463 https://doi.org/10.1210/jcem.86.4.7407
  4. Tufano RP, Clayman G, Heller KS, Inabnet WB, Kebebew E, Shaha A, et al. Management of recurrent/persistent nodal disease in patients with differentiated thyroid cancer: a critical review of the risks and benefits of surgical intervention versus active surveillance. Thyroid 2015;25:15-27 https://doi.org/10.1089/thy.2014.0098
  5. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016;26:1-133 https://doi.org/10.1089/thy.2015.0020
  6. Ha EJ, Chung SR, Na DG, Ahn HS, Chung J, Lee JY, et al. 2021 Korean Thyroid Imaging Reporting and Data System and imaging-based management of thyroid nodules: Korean Society of Thyroid Radiology consensus statement and recommendations. Korean J Radiol 2021;22:2094-2123 https://doi.org/10.3348/kjr.2021.0713
  7. Leenhardt L, Erdogan MF, Hegedus L, Mandel SJ, Paschke R, Rago T, et al. 2013 European thyroid association guidelines for cervical ultrasound scan and ultrasound-guided techniques in the postoperative management of patients with thyroid cancer. Eur Thyroid J 2013;2:147-159 https://doi.org/10.1159/000354537
  8. Lee JY, Baek JH, Ha EJ, Sung JY, Shin JH, Kim JH, et al. 2020 Imaging guidelines for thyroid nodules and differentiated thyroid cancer: Korean Society of Thyroid Radiology. Korean J Radiol 2021;22:840-860 https://doi.org/10.3348/kjr.2020.0578
  9. Hwang HS, Orloff LA. Efficacy of preoperative neck ultrasound in the detection of cervical lymph node metastasis from thyroid cancer. Laryngoscope 2011;121:487-491 https://doi.org/10.1002/lary.21227
  10. Kim SK, Woo JW, Park I, Lee JH, Choe JH, Kim JH, et al. Computed tomography-detected central lymph node metastasis in ultrasonography node-negative papillary thyroid carcinoma: is it really significant? Ann Surg Oncol 2017;24:442-449 https://doi.org/10.1245/s10434-016-5552-1
  11. Suh CH, Baek JH, Choi YJ, Lee JH. Performance of CT in the preoperative diagnosis of cervical lymph node metastasis in patients with papillary thyroid cancer: a systematic review and meta-analysis. AJNR Am J Neuroradiol 2017;38:154-161 https://doi.org/10.3174/ajnr.A4967
  12. Lee Y, Kim JH, Baek JH, Jung SL, Park SW, Kim J, et al. Value of CT added to ultrasonography for the diagnosis of lymph node metastasis in patients with thyroid cancer. Head Neck 2018;40:2137-2148 https://doi.org/10.1002/hed.25202
  13. Bongers PJ, Verzijl R, Dzingala M, Vriens MR, Yu E, Pasternak JD, et al. Preoperative computed tomography changes surgical management for clinically low-risk well-differentiated thyroid cancer. Ann Surg Oncol 2019;26:4439-4444 https://doi.org/10.1245/s10434-019-07618-y
  14. Yoo RE, Kim JH, Hwang I, Kang KM, Yun TJ, Choi SH, et al. Added value of computed tomography to ultrasonography for assessing LN metastasis in preoperative patients with thyroid cancer: node-by-node correlation. Cancers (Basel) 2020;12:1190
  15. Shin JH, Baek JH, Chung J, Ha EJ, Kim JH, Lee YH, et al. Ultrasonography diagnosis and imaging-based management of thyroid nodules: revised Korean Society of Thyroid Radiology consensus statement and recommendations. Korean J Radiol 2016;17:370-395 https://doi.org/10.3348/kjr.2016.17.3.370
  16. Chung SR, Baek JH, Choi YJ, Sung TY, Song DE, Kim TY, et al. Diagnostic algorithm for metastatic lymph nodes of differentiated thyroid carcinoma. Cancers (Basel) 2021;13:1338
  17. Moon JH, Kim YI, Lim JA, Choi HS, Cho SW, Kim KW, et al. Thyroglobulin in washout fluid from lymph node fine-needle aspiration biopsy in papillary thyroid cancer: large-scale validation of the cutoff value to determine malignancy and evaluation of discrepant results. J Clin Endocrinol Metab 2013;98:1061-1068 https://doi.org/10.1210/jc.2012-3291
  18. Ibrahim NB, Milewski PJ, Gillett R, Temple JG. Benign thyroid inclusions within cervical lymph nodes: an alarming incidental finding. Aust N Z J Surg 1981;51:188-189 https://doi.org/10.1111/j.1445-2197.1981.tb05937.x
  19. Choi JS, Kim J, Kwak JY, Kim MJ, Chang HS, Kim EK. Preoperative staging of papillary thyroid carcinoma: comparison of ultrasound imaging and CT. AJR Am J Roentgenol 2009;193:871-878 https://doi.org/10.2214/AJR.09.2386
  20. Kim E, Park JS, Son KR, Kim JH, Jeon SJ, Na DG. Preoperative diagnosis of cervical metastatic lymph nodes in papillary thyroid carcinoma: comparison of ultrasound, computed tomography, and combined ultrasound with computed tomography. Thyroid 2008;18:411-418 https://doi.org/10.1089/thy.2007.0269
  21. Ahn JE, Lee JH, Yi JS, Shong YK, Hong SJ, Lee DH, et al. Diagnostic accuracy of CT and ultrasonography for evaluating metastatic cervical lymph nodes in patients with thyroid cancer. World J Surg 2008;32:1552-1558 https://doi.org/10.1007/s00268-008-9588-7
  22. Chung SR, Baek JH, Choi YJ, Sung TY, Song DE, Kim TY, et al. Risk factors for metastasis in indeterminate lymph nodes in preoperative patients with thyroid cancer. Eur Radiol 2022;32:3863-3868 https://doi.org/10.1007/s00330-021-08478-5
  23. Lee JY, Yoo RE, Rhim JH, Lee KH, Choi KS, Hwang I, et al. Validation of ultrasound risk stratification systems for cervical lymph node metastasis in patients with thyroid cancer. Cancers (Basel) 2022;14:2106