• Title/Summary/Keyword: National Defense and Aerospace

Search Result 241, Processing Time 0.031 seconds

A Study on Determination of Motor Data of a Base-Bleed Projectile based on Standard Ballistic Model (표준 탄도모델 기반 항력감소탄의 모터 자료 결정에 관한 연구)

  • Yongin Park;Chihun Lee;Youngsung Ko
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.31-42
    • /
    • 2024
  • In this study, the methodology of determination of base bleed motor data for base bleed projectile based on the NATO standard trajectory model, especially STANAG 4355 Method 2 were presented. Ground combustion experiments and aerodynamic performance firing tests were conducted to determine the drag reduction motor data of the base bleed projectile and this data was described based on the NATO standard ballistic model. The derived drag reduction motor data were input into the ballistic equations to complete the ballistic model and it was confirmed that the calculated predicted trajectory from the ballistic model matched well with the measured trajectory from the aerodynamic performance firing tests.

Molecular Level Understanding of Chemical Erosion on Graphite Surface using Molecular Dynamics Simulations (분자동역학을 이용한 그래파이트 표면에서의 화학적 삭마현상에 관한 분자 수준의 이해)

  • Murugesan, Ramki;Park, Gyoung Lark;Levitas, Valery I.;Yang, Heesung;Park, Jae Hyun;Ha, Dongsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.54-63
    • /
    • 2015
  • We present a microscopic understanding of the chemical erosion due to combustion product on the nozzle throat using molecular dynamics simulations. The present erosion process consists of molecule-addition step and equilibrium step. First, either $CO_2$ or $H_2O$ are introduced into the system with high velocity to provoke the collision with graphite surface. Then, the equilibrium simulation is followed. The collision-included dissociation and its influence on the erosion is emphasized and the present molecular observations are compared with the macroscopic chemical reaction model.

A Study of Wear Behavior for Sealing Graphite at Elevated Temperature (씰링 그라파이트의 고온 마모 거동에 관한 연구)

  • Kim, Yeonwook;Kim, Jaehoon;Yang, Hoyoung;Park, Sunghan;Lee, Hwankyu;Kim, Bumkeun;Lee, Seungbum;Kwak, Jaesu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.113-120
    • /
    • 2013
  • Graphite is commonly used as a solid lubricant leading to low friction coefficient and abrasion. In this study, wear behavior of sealing graphite(HK-6) at elevated temperature was evaluated. Reciprocating wear test was carried out as wear occurred graphite as a seal(HK-6) is positioned between the liner and driving shaft. Variables which are temperature, sliding speed and contact load are set. This study suggest optimized environment conditions through the wear properties of graphite.

An Experimental Study of the Infrared Signal for Exhaust Plume with Bypass Ratio (바이패스비에 따른 배기가스의 적외선 신호측정 실험연구)

  • Joo, Milee;Jo, Sungpil;Choi, Seongman;Jo, Hana
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.1-9
    • /
    • 2019
  • Infrared signal and exhaust gas temperature distribution with bypass ratio were measured using a micro turbojet engine. Micro turbojet engine was modified to simulate the turbofan engine behaviour. Core flow was simulated using the jet flow of the micro turbojet engine, and high-pressure air was supplied to its external duct to simulate bypass flow. The effects of bypass ratios (0.5, 1.0, and 1.4) were examined. The experimental results indicate that the infrared signal decreases as the bypass ratio increases. And also gas temperature decreases with bypass ratios. Additionally, Schlieren visualization of the exhaust gas plume was conducted. From the exhaust gas temperature distribution and Schlieren images, the structure of jet plume with various bypass ratios was understood.

The Effect of Fiber Volume Fraction Non-uniformity in Thickness Direction on the Buckling Load of Cylindrical Composite Lattice Structures (두께 방향 섬유체적비 불균일이 원통형 복합재 격자 구조 좌굴하중에 미치는 영향)

  • Kong, Seung-Taek;Jeon, Min-Hyeok;Kim, In-Gul;Lee, Sang-Woo
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.129-135
    • /
    • 2021
  • In this paper, in order to examine the effect of fiber volume fraction non-uniformity in thickness direction on the buckling load of cylindrical composite lattice structures, we modified the equation of buckling load of the cylindrical composite lattice structures proposed by Vasiliev. The thickness of each layer of the rib was varied by fiber volume fraction, and material properties were applied differently by using the rule of mixture. Also, we performed linear buckling analysis by varying the structure size, thickness, and average value of the fiber volume fraction of finite element model. Finally, by comparing the calculation results of the buckling load of the equivalent model using the modified buckling load equation and the results of the finite element analysis, we found that the fiber volume fraction non-uniformity in thickness direction can reduce the buckling load of the cylindrical composite lattice structure.

The Nonlinear Combustion Instability Prediction of Solid Rocket Motors (고체로켓모터의 비선형 연소 불안정성 예측 기법)

  • Hong, Ji-Seok;Moon, Hee-Jang;Sung, Hong-Gye;Um, Won-Seok;Seo, Seonghyeon;Lee, Do-hyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.20-27
    • /
    • 2016
  • The prediction of combustion instability is important to avoid an obvious threat to the structural safety and the motor performance because it affects the apparent response function of the propellant, the burning rate, and a mean flow Mach number at the local surface. The combustion instability occurs in case acoustic waves were coupled with the combustion/flow dynamic frequency. In this paper, an acoustic instability model is derived from the nonlinear wave equation for analysing acoustic dynamics in solid rocket motors. The chamber pressure and burning rate effects on combustion instability have been investigated.

Risk Management for R&D Projects in the Military Aircraft Systems (군용항공기 연구개발 사업의 리스크 관리)

  • Kim, Sung Hun;Lee, Hyun Cheol
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.76-84
    • /
    • 2021
  • Military aircraft R&D projects require large-scale investment in cost and time, and involve a complex coordination process in decision-making. The R&D project manager should determine the development management priorities as accurately as possible and focus on R&D capabilities, thereby reducing the risks of the aircraft R&D project. To this end, this study aims to reduce R&D risk by prioritizing cost, schedule, and performance, which are basic management factors used in R&D project management in defense project management regulations. Analytic Hierarchy Process (AHP) is applied using a questionnaire for managers in charge of aviation R&D under the Defense Acquisition Program Administration. As a primary result, the importance of the factors that the aircraft R&D project manager should consider was derived in the order of performance, cost, and schedule, and the priorities of performance and cost in the lower layer were also identified. In addition, in order to provide practical risk management measures to aircraft R&D project managers, the results of analyzing 28 cases of US National Transportation Safety Board accidents were compared and analyzed with the AHP analysis results, and management measures suitable for the situation were specified.

"Peaceful Uses" of Outer Space and Japan' s Space Policy

  • Takai, Susumu
    • The Korean Journal of Air & Space Law and Policy
    • /
    • no.spc
    • /
    • pp.247-270
    • /
    • 2007
  • Space development and utilization must be conducted within a framework of "peaceful uses" principle under Space Treaty. Japan ratified the treaty in 1967, and interpreted "peaceful uses" as "non-military uses" then. A ghost of "peaceful uses" principle has been hung over Japan up to the moment. Japan's space development and utilization has been conducted with genuine academic interest, and therefore Japan did not introduce space infrastructures to national security policy and did not facilitate growth of space industry. When the Cold War ended, Northeast Asian security environment makes Japan difficult to maintain an interpretation as "non-military uses". Besides the change of external security environment, the domestic industry situation and a series of rocket launching failure needed reexamination of Japan's space policy. Japan is gradually changing its space policy, and introducing space infrastructure in a national security policy under a "generalization" theory that gave a broad interpretation of "peaceful uses" principle. Council for Science and Technology Policy (CSTP) adopted a basic strategy of Japan's space policy in 2004. Since then, a long-term report of Japan Aerospace Exploration Agency (JAXA), an investigation report of Society of Japanese Aerospace Companies (SJAC) and a proposal of Japan Business Federation (JSF) were followed. Japan will promote space development and utilization in national security policy with a "strictly defensive defense" strategy and "non-aggressive uses"principle for protection of life and property of Japanese people and stabilization of East Asian countries.

  • PDF

Design the Guidance and Control for Precision Guidance Munitions using Reference Trajectory (기준궤적을 이용한 탄도수정탄 유도제어기 설계)

  • Sung, Jae min;Han, Eu Jene;Song, Min Sup;Kim, Byoung Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.181-188
    • /
    • 2015
  • This paper present, the result of the guidance and control law for a course correction munitions(CCM) with 2sets of canards positioned in the rotating nose section. The nonlinear simulation model of the CCM was developed based on 7DOF equation of motion. The ability of correcting position was verified by open-loop control input with nonlinear model. The guidance and control command was constructed by reference trajectory which can be obtained with no control. Finally, the performance of the guidance and control law was evaluated through Monte-carlo simulation. The CEP(Circular Error Probability) was obtained by considering the errors in muzzle velocity, aerodynamic coefficient, wind, elevation and azimuth angle and density.

Failure Characteristics of Scarf Patch-repaired Composite Single-lap Joints (스카프 패치로 수리한 복합재 단일겹침 체결부의 파손 특성 연구)

  • Kim, Choong-Hyun;Yoo, Jae-Seung;Byeon, Chang-Seok;Ju, Hyun-Woo;Park, Min-Young;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.29 no.3
    • /
    • pp.117-124
    • /
    • 2016
  • The failure strength of composite single-lap joint repaired using scarf patch was investigated by test and finite element method. A total of 45 specimens were tested changing scarf ratio, stacking pattern, and defect size to study the failure strength and mode. Except for one case, all repaired specimens showed the equal or higher strength than the sound specimens and the effect of considered repair parameters was not remarkable. It was found through the failure mode inspection that the surface treatment for bonding was not enough in the case which failed at the lower load than the sound specimen. Three-dimensional finite element analysis was conducted to verify the test results. It was confirmed that the considered repair parameters do not significantly affect the stress distribution of the specimens. It was also observed that the applied tensile load is relieved passing through the overlapped region thickness of which is almost double. From this study, it is concluded that if the bonding procedure for adherends and patch including surface treatment for fabric layer is thoroughly followed, the strength of repaired single-lap joint can be restored up to the strength of sound one.