• Title/Summary/Keyword: Narrowband

Search Result 292, Processing Time 0.02 seconds

Analysis of Multicarrier DS/DPSK Systems with Single Tone Interference Rejection (단일톤 간섭제거를 위한 다단반송파 DS/DPSK 시스템의 성능분석)

  • 엄종선;김동인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.761-770
    • /
    • 1997
  • Narrowband signals can be treated like a single tone interference at the receiver which demodulates wideband signals spectrum overlaid at the same frequency band. In this paper, the single tone interference is effectively suppressed by the use of a multicarrier DPSK direct-sequence(DS) spread spectrum(SS) with maximal-ratio(MR) combining instead of notch filter, which is hard to implement. A noncoherent DPSK system is considered because it is more realizable and does not require any complicate phase tracking, compared with a single carrier system subject to a constraint system bandwidth, and their performance comparisons are validated through simulation. We also propose a suboptimal-ratio(SR) combining which yields uniform and tight low bound on the performance of the MR combining, and then system parameters re optimized by theoretically evaluating the low bound, since an exact analysis appears intractable.

  • PDF

Acoustic Noise Source Identification in the Automotive Industry (자동차의 음향잡음의 원인규명 방안)

  • Hall, Paul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.91-97
    • /
    • 1996
  • We have all heard sounds that did not sound "right" while riding in an automobile. Objectionable sounds are difficult to find and understand because the sound field is complex and dynamic in the near field of an automobile. Many different noise sources and transmission paths must be understood before an engineering change can be recommended. This paper reviews the fundamental characterization of sound and chscusses the Sound Intensity measurement technique. Sound intensity measurements locate sources and sinks of acoustic energy. Used with narrowband analysis equipment, acoustic noise sources can be identified. Sound intensity measurements are made -in-situ and do not require specmi anechoic facilities. The measurement results in a vector representation of the near field sound field and can discriminate between multiple sound sources.d sources.

  • PDF

A NNAC using narrowband interference signal control in cellular mobile communication systems (셀룰라 이동 통신에서 NNAC를 이용한 협대역 간섭 신호 제어)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.3
    • /
    • pp.542-546
    • /
    • 2009
  • In this Paper, a back propagation neural network learning algorithm based on the complex multilayer perceptron is represented for controling and detecting interference of the received signals in cellular mobile communication system. We proposed neural network adaptive correlator which has fast convergence rate and good performance with combining back propagation neural network and the receiver of cellular. We analyzed and proved that NNAC has lower bit error probability than that of traditional RAKE receiver through results of computer simulation in the presence of the tone and narrow - band interference and the co-channel interference.

Yield Prediction of Chinese Cabbage (Brassicaceae) Using Broadband Multispectral Imagery Mounted Unmanned Aerial System in the Air and Narrowband Hyperspectral Imagery on the Ground

  • Kang, Ye Seong;Ryu, Chan Seok;Kim, Seong Heon;Jun, Sae Rom;Jang, Si Hyeong;Park, Jun Woo;Sarkar, Tapash Kumar;Song, Hye young
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.138-147
    • /
    • 2018
  • Purpose: A narrowband hyperspectral imaging sensor of high-dimensional spectral bands is advantageous for identifying the reflectance by selecting the significant spectral bands for predicting crop yield over the broadband multispectral imaging sensor for each wavelength range of the crop canopy. The images acquired by each imaging sensor were used to develop the models for predicting the Chinese cabbage yield. Methods: The models for predicting the Chinese cabbage (Brassica campestris L.) yield, with multispectral images based on unmanned aerial vehicle (UAV), were developed by simple linear regression (SLR) using vegetation indices, and forward stepwise multiple linear regression (MLR) using four spectral bands. The model with hyperspectral images based on the ground were developed using forward stepwise MLR from the significant spectral bands selected by dimension reduction methods based on a partial least squares regression (PLSR) model of high precision and accuracy. Results: The SLR model by the multispectral image cannot predict the yield well because of its low sensitivity in high fresh weight. Despite improved sensitivity in high fresh weight of the MLR model, its precision and accuracy was unsuitable for predicting the yield as its $R^2$ is 0.697, root-mean-square error (RMSE) is 1170 g/plant, relative error (RE) is 67.1%. When selecting the significant spectral bands for predicting the yield using hyperspectral images, the MLR model using four spectral bands show high precision and accuracy, with 0.891 for $R^2$, 616 g/plant for the RMSE, and 35.3% for the RE. Conclusions: Little difference was observed in the precision and accuracy of the PLSR model of 0.896 for $R^2$, 576.7 g/plant for the RMSE, and 33.1% for the RE, compared with the MLR model. If the multispectral imaging sensor composed of the significant spectral bands is produced, the crop yield of a wide area can be predicted using a UAV.

A Study on the Robust Double Talk Detector for Acoustic Echo Cancellation System (음향반항 제거 시스템을 위한 강인한 동시통화 검출기에 관한 연구)

  • 백수진;박규식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.121-128
    • /
    • 2003
  • Acoustic Echo Cancellation(m) is very active research topic having many applications like teleconference and hands-free communication and it employs Double Talk Detector(DTD) to indicate whether the near-end speaker is active or not. However. the DTD is very sensitive to the variation of acoustical environment and it sometimes provides wrong information about the near-end speaker. In this paper, we are focusing on the development of robust DTD algorithm which is a basic building block for reliable AEC system. The proposed AEC system consists of delayless subband AEC and narrow-band DTD. Delayless subband AEC has proven to have excellent performance of echo cancellation with a low complexity and high convergence speed. In addition, it solves the signal delay problem in the existing subband AEC. On the other hand, the proposed narrowband DTD is operating on low frequency subband. It can take most advantages from the narrow subband such as a low computational complexity due to the down-sampling and the reliable DTD decision making procedure because of the low-frequency nature of the subband signal. From the simulation results of the proposed narrowband DTD and wideband DTD, we confirm that the proposed DTD outperforms the wideband DTD in a sense of removing possible false decision making about the near-end speaker activity.

A Study on the PAPR Reduction Using Phase Rotation Method Applying Metaheuristic Algorithm (Metaheuristic 알고리즘을 적용한 위상회전 기법에 의한 PAPR 감소에 관한 연구)

  • Yoo, Sun-Yong;Park, Bee-Ho;Kim, Wan-Tae;Cho, Sung-Joon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.26-35
    • /
    • 2009
  • OFDM (Orthogonal Frequency Division Multiplexing) system is robust to frequency selective fading and narrowband interference in high-speed data communications. However, an OFDM signal consists of a number of independently modulated subcarriers and the superposition of these subcarriers causes a problem that can give a large PAPR(Peak-to-Average Power Ratio). Phase rotation method can reduce the PAPR without nonlinear distortion by multiplying phase weighting factors. But computational complexity of searching phase weighting factors is increased exponentially with the number of subblocks and considered phase factor. Therefore, a new method, which can reduce computational complexity and detect phase weighting factors efficiently, should be developed. In this paper, a modeling process is introduced, which apply metaheuristic algerian in phase rotation method and optimize in PTS (Particle Swarm Optimization) scheme. Proposed algorithm can solve the computational complexity and guarantee to reduce PAPR We analyzed the efficiency of the PAPR reduction through a simulation when we applied the proposed method to telecommunication systems.

On the Effects of Multi Path Fading in B-CDMA Systems (광대역 CDMA 시스템에서 다경로 페이딩현상의 영향)

  • 류상진;김희규;김철성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.7
    • /
    • pp.1044-1049
    • /
    • 1993
  • In this paper, it is shown that B-CDMA systems inherently reduce the effects of Multi Path fading phenomena which causes to degrade the performance of mobile communication systems. B-COMA systems use PN codes of high chip rates ( > 10 Mbps) and evaluate autocorrelation with the same code in the receiver. Therefore, it is possible that multipath signals, whose delay time is longer than one chip duration compared to the first signal, are removed. We model the wideband fading channel as a suitable linear filter, and perform computer simulation of signal transmission and reception. Graphic comparison of eye diagrams between the narrowband and wideband systems is shown.

  • PDF

Design and Implementation of Ultra Wideband Antenna with Resistive Loading (저항성 부하를가진 초광대역 안테나 설계 및 제작)

  • Jeon Sang-Bong;Jung Yong-Hwa;Ahn Chang-Hoi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1159-1164
    • /
    • 2006
  • Broadband antennas have late-time ringing by multi-reflections between feed points and 0pen ends of the antennas, which indicates the narrowband nature of the antenna. The resistive loading has been used to reduce the late time ringing that is important for ground penetrating radar and resonance detection systems in order to prevent masking of target. In this paper, we design an ultra wide band antenna with resistive loading technique to reduce the internal reflections within the antenna.. The designed antenna is implemented and tested to show inIproved characteristics.

Analysis of Joint Multiband Sensing-Time M-QAM Signal Detection in Cognitive Radios

  • Tariq, Sana;Ghafoor, Abdul;Farooq, Salma Zainab
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.892-899
    • /
    • 2012
  • We analyze a wideband spectrum in a cognitive radio (CR) network by employing the optimal adaptive multiband sensing-time joint detection framework. This framework detects a wideband M-ary quadrature amplitude modulation (M-QAM) primary signal over multiple nonoverlapping narrowband Gaussian channels, using the energy detection technique so as to maximize the throughput in CR networks while limiting interference with the primary network. The signal detection problem is formulated as an optimization problem to maximize the aggregate achievable secondary throughput capacity by jointly optimizing the sensing duration and individual detection thresholds under the overall interference imposed on the primary network. It is shown that the detection problems can be solved as convex optimization problems if certain practical constraints are applied. Simulation results show that the framework under consideration achieves much better performance for M-QAM than for binary phase-shift keying or any real modulation scheme.

Compact Band-notched UWB Antenna Design Based On Transmission Line Model

  • Zhu, Xiaoming;Yang, Xiaodong;Chen, Peng
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.338-343
    • /
    • 2015
  • In order to avoid the interference from existing narrowband communication systems, this paper proposes a compact band-notched UWB (ultra wideband) antenna with size of $12mm{\times}22mm{\times}1.6mm$. Transmission line model is applied to analyzing wide impedance matching characteristic of the modified base antenna, which has a gradual stepped impedance feeder structure. The proposed antenna realizes dual band-notched function by combining two biased T-shaped parasitic elements on the rear side with a window aperture on the radiation patch. The simulation current distributions of the antenna reflect resonant suppression validity of the two methods. In addition, the measured radiation characteristics demonstrate the proposed antenna prevents signal interference from WLAN (5.15-5.825GHz) and WiMAX (3.4-3.69GHz) effectively, and the measured patterns show the antenna omnidirectional radiation in working frequencies.