• 제목/요약/키워드: Nanozyme

검색결과 4건 처리시간 0.015초

질병진단을 위한 나노자임 연구의 최근 동향 (Recent Advances in Nanozyme Research for Disease Diagnostics)

  • 신호연;윤태영;김문일
    • KSBB Journal
    • /
    • 제30권1호
    • /
    • pp.1-10
    • /
    • 2015
  • Nanomaterial-based artificial enzymes (Nanozymes) have attracted recent attention because of their unique advantageous characteristics such as excellent robustness and stability, low-cost production by facile scale-up, and longterm preservation capability that are critically required as an alternative to natural enzymes. These nanozymes exhibit natural enzyme-like activity, and they have been applied to diverse kinds of detection methods for disease-associated biomolecules such as DNAs, proteins, cells, and small molecules including glucose. To highlight the progress in the field of disease diagnostics using nanozyme, this review discusses many nanozyme-based detection methods categorized by the types of target biomolecules. Finally, we address the current challenges and perspectives for the widespread utilization of nanozyme-based disease diagnostics.

효소 모사 활성 무기 나노입자의 진단 및 치료 응용연구 동향 (Recent Progress in Inorganic Nanoparticles with Enzyme-Mimetic Activities and Their Applications to Diagnosis and Therapy)

  • 이준수;김태연;김봉근;나현빈
    • 공업화학
    • /
    • 제31권4호
    • /
    • pp.352-359
    • /
    • 2020
  • 무기 나노입자는 나노미터 크기에서 유래된 광학 및 자성 성질과 같은 물리적 특성을 활용하여 생명-의학 분야에 적극적으로 응용되어왔다. 최근에는 물리적 성질 이외에 무기 나노입자가 갖는 화학적 성질, 특히 효소와 유사한 촉매활성을 이용한 새로운 진단법들이 개발되고 있다. 효소 모사 활성의 검증에 집중하던 초기연구에서, 현재는 활성 메커니즘의 이해를 통한 적극적 활성 제어 및 치료 특성의 직접적 응용으로 연구 범위가 확장되고 있다. 본 총설에서는 효소 모사 활성을 갖는 무기 나노입자, 소위 "나노자임"의 촉매 활성 제어와 치료 및 진단 분야에서의 연구성과들에 대한 최근 동향을 정리하였다. 무기 나노입자의 효소 모사 활성은 입자의 고유한 물리적 성질과 결합되어 새로운 진단 및 치료법의 개발로 이어질 것으로 기대한다.

클러스터 초상자성체 산화철 나노입자를 이용한 색채학적 해석 기반 당 측정 (Colorimetric Based Analysis Using Clustered Superparamagnetic Iron Oxide Nanoparticles for Glucose Detection)

  • 최원석;기재홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제41권6호
    • /
    • pp.228-234
    • /
    • 2020
  • Superparamagnetic iron oxide nanoparticles (SPIONs) are approved by the Food and Drug Administration (FDA) in the United States. SPIONs are used in magnetic resonance imaging (MRI) as contrast agents and targeted delivery in nanomedicine using external magnet sources. SPIONs act as an artificial peroxidase (i.e., nanozyme), and these reactions were highly stable in various pH conditions and temperatures. In this study, we report a nanozyme ability of the clustered SPIONs (CSPIONs) synthesized by the oil-in-water (O/W) method and coated with biocompatible poly(lactic-co-glycolic acid) (PLGA). We hypothesize that the CSPIONs can have high sensitivity toward H2O2 derived from the reaction between a fixed amount of glucose and glucose oxidase (GOX). As a result, CSPIONs oxidized a 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) commonly used as a substrate for hydrogen peroxidase in the presence of H2O2, leading to a change in the color of the substrate. We also utilized a colorimetric assay at 417 nm using various glucose concentrations from 5 mM to 1.25 μM to validate β-D-glucose detection. This study demonstrated that the absorbance value increases along with increasing the glucose level. The results were highly repeated at concentrations below 5 mM (all standard deviations < 0.03). Moreover, the sensitivity and limit of detection were 1.50 and 5.44 μM, respectively, in which CSPIONs are more responsive to glucose than SPIONs. In conclusion, this study suggests that CSPIONs have the potential to be used for glucose detection in diabetic patients using a physiological fluid such as ocular, saliva, and urine.

Antibacterial Effect of Chitosan-Modified Fe3O4 Nanozymes on Acinetobacter baumannii

  • Wang, Wenjun;Wu, ziman;Shi, peiru;Wu, pinyun;Qin, peng;Yu, lin
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권2호
    • /
    • pp.263-267
    • /
    • 2022
  • The aim of this study was to determine whether the antibacterial activity of chitosan-modified Fe3O4 (CS@Fe3O4) nanomaterials against Acinetobacter baumannii (A. baumannii) is mediated through changes in biofilm formation and reactive oxygen species (ROS) production. For this purpose, the broth dilution method was used to examine the effect of CS@Fe3O4 nanoparticles on bacterial growth. The effects of CS@Fe3O4 nanoparticles on biofilm formation were measured using a semi-quantitative crystal violet staining assay. In addition, a bacterial ROS detection kit was used to detect the production of ROS in bacteria. The results showed that CS@Fe3O4 nanoparticles had a significant inhibitory effect on the colony growth and biofilm formation of drug-resistant A. baumannii (p < 0.05). The ROS stress assay revealed significantly higher ROS levels in A. baumannii subjected to CS@Fe3O4 nanoparticle treatment than the control group (p < 0.05). Thus, we demonstrated for the first time that CS@Fe3O4 nanoparticles had an inhibitory effect on A. baumannii in vitro, and that the antibacterial effect of CS@Fe3O4 nanoparticles on drug-resistant A. baumannii was more significant than on drug-sensitive bacteria. Our findings suggest that the antibacterial mechanism of CS@Fe3O4 nanoparticles is mediated through inhibition of biofilm formation in drug-resistant bacteria, as well as stimulation of A. baumannii to produce ROS. In summary, our data indicate that CS@Fe3O4 nanoparticles could be used to treat infections caused by drug-resistant A. baumannii.