• 제목/요약/키워드: Nanotube structure

검색결과 289건 처리시간 0.026초

수소 및 산소 플라즈마 처리에 따른 탄소나노튜브의 구조적 특성 변화 (Influence of Hydrogen and Oxygen Plasma Treatment on the Structural Properties of Carbon Nanotubes)

  • 이재형;나창운;박대희
    • 한국전기전자재료학회논문지
    • /
    • 제20권11호
    • /
    • pp.943-947
    • /
    • 2007
  • The effect of hydrogen and oxygen plasma treatments on the structural properties of carbon nanotube(CNT) has been systematically investigated. As the plasma power was increased, nano particles were appeared at the surface of CNTs. At high plasma power(300 Watt), the structure of CNT was changed from nanotube type to nano particles. However, in case of hydrogen plasma treatment, there was no change in microstructure of CNT. From the Raman analysis, the crystallinity of CNT was deteriorated by the plasma treatment, regardless of gas types.

탄소 나노튜브 알루미늄 복합재료 저온 분사 코팅의 적층 거동 및 특성 (Deposition Behavior and Properties of Carbon Nanotube Aluminum Composite Coatings in Kinetic Spraying Process)

  • 강기철;;이창희
    • Journal of Welding and Joining
    • /
    • 제26권5호
    • /
    • pp.36-42
    • /
    • 2008
  • Carbon nanotube (CNT) aluminum composite coatings were built up through kinetic spraying process. Deposition behavior of CNT aluminum composite on an aluminum 1050 alloy substrate was analyzed based on deposition mechanism of kinetic spraying. The microstructure of CNT aluminum composite coating were observed and analyzed. Also, the electrical resistivity, bond strength and micro-hardness of the CNT aluminum composite coatings were measured and compared to kinetic sprayed aluminum coatings. The CNT aluminum composite coatings have a dense structure with low porosity. Compared to kinetic sprayed aluminum coating, the CNT aluminum composite coatings present lower electrical resistivity and higher micro-hardness due to high electrical conductivity and dispersion hardening effects of CNTs.

카본나노튜브의 포텐셜 함수에 따른 마찰거동에 대한 분자동역학 시뮬레이션 연구 (Study on frictional behavior of carbon nanotube with respect to potential function by molecular dynamics simulation)

  • 김현준;김대은
    • 정보저장시스템학회논문집
    • /
    • 제9권2호
    • /
    • pp.36-41
    • /
    • 2013
  • Frictional behavior of a single carbon nanotube(CNT) was investigated using molecular dynamics simulation. A single CNT aligned horizontally on silver or graphene substrate was modeled to evaluate its frictional behavior such as frictional force and rolling/sliding motion with respect to potential parameter and lattice structure of the substrate. As a result, it was found that friction and rolling was affected by adhesion between two surfaces and period of the rolling depended on lattice distance of the substrate.

유기용매 사용 감소를 위한 건식 기계 장치를 이용한 NH2-HNT 제조의 조건 변화와 스케일업 (Production of NH2-HNT Using Organic Solvent Reducing Dry Mechanical Device with Different Conditions and with Scale Up Settings)

  • 김문일
    • 한국산업융합학회 논문집
    • /
    • 제27권2_2호
    • /
    • pp.357-361
    • /
    • 2024
  • Halloysite nanotube (HNT) has a nanotube structure with the chemical formula of Al2Si2O5(OH)4·nH2O and is a natural sediment of aluminosilicate. HNT has been used as additive to improve the mechanical properties of epoxy composites with exchange of amine group as a terminal functional group using huge amount of organic solvents. In order to save time and simplify complicated procedures, a dry coating machine was designed and used for amine group exchange in previous research. For better applications, it was conducted with different parameters and with scale up settings. Best condition was found to reduce usage of solvent, time and man power.

Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach

  • Eltaher, Mohamed A.;Almalki, Talaal A.;Ahmed, Khaled I.E.;Almitani, Khalid H.
    • Advances in nano research
    • /
    • 제7권1호
    • /
    • pp.39-49
    • /
    • 2019
  • This paper focuses on two main objectives. The first one is to exploit an energy equivalent model and finite element method to evaluate the equivalent Young's modulus of single walled carbon nanotubes (SWCNTs) at any orientation angle by using tensile test. The calculated Young's modulus is validated with published experimental results. The second target is to exploit the finite element simulation to investigate mechanical buckling and natural frequencies of SWCNTs. Energy equivalent model is presented to describe the atomic bonding interactions and their chemical energy with mechanical structural energies. A Program of Nanotube modeler is used to generate a geometry of SWCNTs structure by defining its chirality angle, overall length of nanotube and bond length between two adjacent nodes. SWCNTs are simulated as a frame like structure; the bonds between each two neighboring atoms are treated as isotropic beam members with a uniform circular cross section. Carbon bonds is simulated as a beam and the atoms as nodes. A finite element model using 3D beam elements is built under the environment of ANSYS MAPDL environment to simulate a tensile test and characterize equivalent Young's modulus of whole CNT structure. Numerical results are presented to show critical buckling loads, axial and transverse natural frequencies of SWCNTs with different orientation angles and lengths. The understanding of mechanical behaviors of CNTs are essential in developing such structures due to their great potential in wide range of engineering applications.

수열처리에 의한 TiO2 나노 튜브 센서의 가스 검지 특성 (Characteristics of TiO2 Nanotube Gas Sensor Preparedby Hydrothermal Treatment)

  • 서민현;오상진;테츠야 키다;켄고 시마노에;허증수
    • 한국재료학회지
    • /
    • 제17권8호
    • /
    • pp.437-441
    • /
    • 2007
  • Preparation and morphology control of $TiO_2$ nano powders for gas sensor applications are investigated. $TiO_2$ nanopowders with rutile and anatase structures were prepared by controlling the pH value of a precursor solution without any heat treatment. The mean particle size of $TiO_2$ powders were below 10nm. The prepared $TiO_2$ nano powders were hydrothermal treated by NaOH solution. The sample was washed in HCl solution. As a result and $TiO_2$ nanotubes were formed. The lengths of $TiO_2$ nanotube were $1{\mu}m$ and the diameters were 10nm. Crystal structure and microstructure of $TiO_2$ nanotube were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM). As-prepared $TiO_2$ nanotube powders have several advantages of nano particle size and high surface area and could be a prominent candidate for nano-sensors. The sensitivity of $TiO_2$ nanotube sensor was measured for toluene and NO in this study.

On static bending of multilayered carbon nanotube-reinforced composite plates

  • Daikh, Ahmed Amine;Bensaid, Ismail;Bachiri, Attia;Houari, Mohamed Sid Ahmed;Tounsi, Abdelouahed;Merzouki, Tarek
    • Computers and Concrete
    • /
    • 제26권2호
    • /
    • pp.137-150
    • /
    • 2020
  • In this paper, the bending behavior of single-walled carbon nanotube-reinforced composite (CNTRC) laminated plates is studied using various shear deformation plate theories. Several types of reinforcement material distributions, a uniform distribution (UD) and three functionally graded distributions (FG), are inspected. A generalized higher-order deformation plate theory is utilized to derive the field equations of the CNTRC laminated plates where an analytical technique based on Navier's series is utilized to solve the static problem for simply-supported boundary conditions. A detailed numerical analysis is carried out to examine the influence of carbon nanotube volume fraction, laminated composite structure, side-to-thickness, and aspect ratios on stresses and deflection of the CNTRC laminated plates.

Direct Growth of TiO2-Nanotubes on Ti-Mesh Substrate for Photoanode Application to Dye-sensitized Solar Cell

  • Park, Min-Woo;Lee, Dong-Hoon;Sung, Youl-Moon
    • 조명전기설비학회논문지
    • /
    • 제24권3호
    • /
    • pp.14-19
    • /
    • 2010
  • Partial anodic oxidation of Ti-mesh with a wire diameter of ~200[${\mu}m$] produces self-aligned $TiO_2$ nanotube arrays (~50[${\mu}m$] in length) on Ti-mesh substrate. The electrolyte used for anodic oxidation was an ethylene glycol solution with an addition of 1.5 vol. % $H_2O$ and 0.2 wt. % $NH_4F$. A dye-sensitized solar cell utilizing the photoanode structure of $TiO_2$-nanotube/Ti-mesh was fabricated without a transparent conducting oxide (TCO) layer, in which Ti-mesh replaced the role of TCO. The 1.93[%] photoconversion efficiency was low, which can be attributed to both insufficient dye molecules attachment and limited electrolyte flow to dye molecules. The optimized nanotube diameter and length as well as the $TiCl_4$ treatment can improve cell performance.

Triode-Type Field Emission Displays with Carbon Nanotube Emitters

  • You, J.H.;Lee, C.G.;Jung, J.E.;Jin, Y.W.;Jo, S.H.;Nam, J.W.;Kim, J.W.;Lee, J.S.;Jang, J.E.;Park, N.S.;Cha, J.C.;Chi, E.J.;Lee, S.J.;Cha, S.N.;Park, Y.J.;Ko, T.Y.;Choi, J.H.;Lee, S.J.;Hwang, S.Y.;Chung, D.S.;Park, S.H.;Kim, J.M.
    • Journal of Information Display
    • /
    • 제2권3호
    • /
    • pp.48-53
    • /
    • 2001
  • Carbon nanotube emitters, prepared by screen printing, have demonstrated a great potential towards low-cost, largearea field emission displays. Carbon nanotube paste, essential to the screen printing technology, was formulated to exhibit low threshold electric fields as well as an emission uniformity over a large area. Two different types of triode structures, normal gate and undergate, have been investigated, leading us to the optimal structure designing. These carbon nanotube FEDs demonstrated color separation and high brightness over 300 $cd/m^2$ at a video-speed operation of moving images. Our recent developments are discussed in details.

  • PDF

임상가를 위한 특집 2 - 티타늄 임플란트 표면처리에서의 나노테크놀로지 (Nanotechnology in the Surface Treatment of Titanium Implant.)

  • 오승한
    • 대한치과의사협회지
    • /
    • 제48권2호
    • /
    • pp.106-112
    • /
    • 2010
  • 아직까지 나노관련 기술이 티타늄 임플란트에 직접적으로 사용되는 부분이 상당히 미약하다. 하지만, 수직으로 정렬된 구조를 가지는 티타니아 나노튜브는 생체 내 대부분의 임플란트 재료로 사용되는 티타늄의 차세대 개발에 있어서 가장 중요한 영향을 미칠 것이다. 본문에 설명되어 있는 내용들 뿐 만이라, 티타니아 나노튜브는 파골세포의 골 흡수성 방지, 줄기세포의 특정 성체세포로의 분화, 연골세포의 재분화, 간세포를 이용한 생물 반응기(bio-reactor) 개발 등 생체재료의 여러 분야에서 많이 연구되고 있다. 특히, 줄기세포에 관한 연구는 차세대 임플란트 개발에 있어서 가장 중요한 연구 분야 중의 하나로서, 골을 형성하는 조골세포와 골을 파괴하는 피골세포 모두 줄기세포 로부터 만들어진다는 것을 유념해야 할 것이다. 만약, 티타니아 나노튜브의 독특한 나노구조를 이용하여 줄기세포의 조골세포로의 직접 분회를 제어하는 기술이 개발되어 상업화된다면, 이 기술을 기반으로 하여 현 재까지 개발된 모든 표면 증착 및 코팅 기술을 새롭게 이용하는 차세대 티타늄 임플란트의 개발을 위한 초석이 되리라고 본다.