Browse > Article
http://dx.doi.org/10.12989/cac.2020.26.2.137

On static bending of multilayered carbon nanotube-reinforced composite plates  

Daikh, Ahmed Amine (Structural Engineering and Mechanics of Materials Laboratory, Department of Civil Engineering)
Bensaid, Ismail (IS2M Laboratory, Faculty of Technology, Mechanical Engineering Department, Tlemcen University)
Bachiri, Attia (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes)
Houari, Mohamed Sid Ahmed (Mechanics of Structures and Solids Laboratory, Faculty of Technology, University of Sidi Bel Abbes)
Tounsi, Abdelouahed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes)
Merzouki, Tarek (LISV, University of Versailles Saint-Quentin)
Publication Information
Computers and Concrete / v.26, no.2, 2020 , pp. 137-150 More about this Journal
Abstract
In this paper, the bending behavior of single-walled carbon nanotube-reinforced composite (CNTRC) laminated plates is studied using various shear deformation plate theories. Several types of reinforcement material distributions, a uniform distribution (UD) and three functionally graded distributions (FG), are inspected. A generalized higher-order deformation plate theory is utilized to derive the field equations of the CNTRC laminated plates where an analytical technique based on Navier's series is utilized to solve the static problem for simply-supported boundary conditions. A detailed numerical analysis is carried out to examine the influence of carbon nanotube volume fraction, laminated composite structure, side-to-thickness, and aspect ratios on stresses and deflection of the CNTRC laminated plates.
Keywords
bending; carbon nanotube-reinforced composites; laminated plates; generalized higher-order deformation plate theory; simply-supported edge conditions;
Citations & Related Records
Times Cited By KSCI : 18  (Citation Analysis)
연도 인용수 순위
1 Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Bedia, E.A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., 73(2), 209. https://doi.org/10.12989/sem.2020.73.2.209.   DOI
2 Chelahi, C.S., Kaci, A., Bousahla, A. A., Tounsi, A., Benrahou, K. H. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471   DOI
3 Daikh, A.A. and Zenkour, A.M. (2019a), "Effect of porosity on the bending analysis of various functionally graded sandwich plates", Mater. Res. Expres., 6, 065703.   DOI
4 Daikh, A.A. and Zenkour, A.M. (2019b), "Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory", Mater. Res. Express, 6(11) 115707. https://doi.org/10.1088/2053-1591/ab48a9   DOI
5 Daikh, A.A. Bachiri, A. Houari, M.S.A. and Tounsi, A. (2020b), "Size dependent free vibration and buckling of multilayered carbon nanotubes reinforced composite nanoplates in thermal environment", Mech. Bas. Des. Struct. Mach., 1-29. https://doi.org/10.1080/15397734.2020.1752232.
6 Daikh, A.A., Drai, A., Bensaid, I., Houari, M.S.A. and Tounsi, A. (2020), "On vibration of functionally graded sandwich nanoplates in the thermal environment", J. Sandw. Struct. Mater., 1099636220909790. https://doi.org/10.1177/1099636220909790.
7 Draoui. A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.   DOI
8 Esawi, A.M.K. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: potential and current challenges", Mater. Des., 2, 394-401. https://doi.org/10.1016/j.matdes.2006.09.022.
9 Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29, 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.   DOI
10 Thai, C.H., Ferreira, A.J.M. and Rabczuk, T. and Nguyen-Xuan, H.A (2017), "A naturally stabilized nodal integration meshfree formulation for carbon nanotube-reinforced composite plate analysis", Eng. Anal. Bound. Elem., 92, 136-155. https://doi.org/10.1016/j.enganabound.2017.10.018.
11 Wang, Z.X. and Shen, H.S. (2011), "Nonlinear vibration of nanotube-reinforced composite plates in thermal environments", Comput. Mater. Sci., 50, 2319-2330. https://doi.org/10.1016/j.commatsci.2011.03.005.   DOI
12 Trang, L.T.N. and Tung, H.V. (2018), "Tangential edge constraint sensitivity of nonlinear stability of CNT-reinforced composite plates under compressive and thermomechanical loadings", J. Eng. Mech., ASCE, 144, 04018056. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001479.   DOI
13 Truong-Thi, T., Vo-Duy, T., Ho-Huu, V. and Nguyen-Thoi, T. (2018), "Static and free vibration analyses of functionally graded carbon nanotube reinforced composite plates using CS-DSG3", Int. J. Comput. Meth., 17, 1850133. https://doi.org/10.1142/S0219876218501335.   DOI
14 Vodenitcharova, T. and Zhang, L.C. (2003), "Effective wall thickness of a single-walled carbon nanotube", Phys. Rev. B, 68, 165401. https://doi.org/10.1103/PhysRevB.68.165401.   DOI
15 Wang, Z.X. and Shen, H.S. (2012), "Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations in thermal environments", Nonlin. Dyn., 70, 735-754. https://doi.org/10.1007/s11071-012-0491-2.   DOI
16 Wattanasakulpong, N. and Chaikittiratana, A. (2015), "Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation", Appl. Math. Model., 39, 5459-5472. https://doi.org/10.1016/j.apm.2014.12.058.   DOI
17 Guessas, H., Zidour, M., Meradjah, M. and Tounsi, A. (2018), "The critical buckling load of reinforced nanocomposite porous plates", Struct. Eng. Mech., 67, 115-123. https://doi.org/10.12989/sem.2018.67.2.115.   DOI
18 Fazzolari, F.A. (2018), "Thermoelastic vibration and stability of temperature-dependent carbon nanotube-reinforced composite plates", Compos. Struct., 196, 199-214. https://doi.org/10.1016/j.compstruct.2018.04.026.   DOI
19 Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K. and Wagner, H.D. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites", Compos.: Part A, 36, 1555-1561. https://doi.org/10.1016/j.compositesa.2005.02.006.   DOI
20 Griebel, M. and Hamaekers, J. (2004), "Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites", Comput. Meth. Appl. Mech. Eng., 193, 1773-1788. https://doi.org/10.1016/j.cma.2003.12.025.   DOI
21 Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39, 315-23. https://doi.org/10.1016/j.commatsci.2006.06.011.   DOI
22 Kaci, A., Tounsi, A., Bakhti, K. and Adda Bedia, E.A. (2012), "Nonlinear cylindrical bending of functionally graded carbon nanotube-reinforced composite plates", Steel Compos. Struct., 12, 491-504. https://doi.org/10.12989/scs.2012.12.6.491.   DOI
23 Karama, M., Afaq, K.S. and Mistou, S. (2009), "A new theory for laminated composite plates", Proc. Inst. Mech. Eng., Part L: J. Mater. Des. Appl., 223, 53-62. https://doi.org/10.1243/14644207JMDA189.   DOI
24 Karami, B., Janghorban, M. and Li, L. (2018a), "On guided wave propagation in fully clamped porous functionally graded nanoplates", Acta Astronautica, 143, 380-390. https://doi.org/10.1016/j.actaastro.2017.12.011.   DOI
25 Zhu, R., Pan, E. and Roy, A.K. (2007), "Molecular dynamics study of the stress-strain behavior of carbon-nanotube reinforced Epon 862 composites", Mater. Sci. Eng A, 447, 51-57. https://doi.org/10.1016/j.msea.2006.10.054.   DOI
26 Zamani Nejad, M. and Taghizadeh, T. (2017), "Elastic analysis of carbon nanotube-reinforced composite plates with piezoelectric layers using shear deformation theory", Int. J. Appl. Mech., 9, 1750011. https://doi.org/10.1142/S1758825117500119.   DOI
27 Zhang, L.W. and Liew, K.M. (2015), "Geometrically nonlinear large deformation analysis of functionally graded carbon nanotube reinforced composite straight-sided quadrilateral plates", Comput. Meth. Appl. Mech. Eng., 295, 219-239. https://doi.org/10.1016/j.cma.2015.07.006.   DOI
28 Karami, B., Janghorban, M. and Rabczuk, T. (2019a), "Analysis of elastic bulk waves in functionally graded triclinic nanoplates using a quasi-3D bi-Helmholtz nonlocal strain gradient model", Eur. J. Mech.-A/Solid., 78, 103822. https://doi.org/10.1016/j.euromechsol.2019.103822.   DOI
29 Zhang, L.W., Cui, W.C. and Liew, K.M. (2015), "Vibration analysis of functionally graded carbon nanotube reinforced composite thick plates with elastically restrained edges", Int. J. Mech. Sci., 103, 9-21. https://doi.org/10.1016/j.ijmecsci.2015.08.021.   DOI
30 Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94, 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010.   DOI
31 Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019b), "Elastic guided waves in fully-clamped functionally graded carbon nanotube-reinforced composite plates", Mater. Res. Express, 6(9), 0950a9.   DOI
32 Karami, B., Janghorban, M. and Rabczuk, T. (2020a), "Forced vibration analysis of functionally graded anisotropic nanoplates resting on wWinkler/Pasternak-Foundation", Comput. Mater. Continua, 62(2), 607-629. http://dx.doi.org/10.32604/cmc.2020.08032.   DOI
33 Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018b), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28, 99-110. http://dx.doi.org/10.12989/scs.2018.28.1.099.   DOI
34 Karami, B., Shahsavari, D. and Janghorban, M. (2018), "A Comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Technol., 82, 499-512. https://doi.org/10.1016/j.ast.2018.10.001.   DOI
35 Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2020b), "Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment", Struct. Eng. Mech., 73(2), 191-207. http://dx.doi.org/10.12989/sem.2020.73.2.191.   DOI
36 Kiani, Y. (2016), "Free vibration of functionally graded carbon nanotube reinforced composite plates integrated with piezoelectric layers", Comput. Math. Appl., 72, 2433-2449. https://doi.org/10.1016/j.camwa.2016.09.007.   DOI
37 Lau, K.T., Gu, C., Gao, G.H., Ling H.Y. and Reid, S.R. (2004), "Stretching process of single- and multiwalled carbon nanotubes for nanocomposite applications", Carbon, 42, 426-8.   DOI
38 Bakhadda, B., Bachir-Bouiadjra, M., Bourada, F., Bousahla, A.A., Tounsi, A. and Mahmoud SR. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., 27, 311-324. https://doi.org/10.12989/was.2018.27.5.311.   DOI
39 Alibeigloo, A. and Liew, K.M. (2013), "Thermoelastic analysis of functionally graded carbon nanotube-reinforced composite plate using theory of elasticity", Compos. Struct., 106, 873-881. https://doi.org/10.1016/j.compstruct.2013.07.002.   DOI
40 Ansari, R., Hasrati, E., Faghih Shojaei, M., Gholami, R. and Shahabodini, A. (2015), "Forced vibration analysis of functionally graded carbon.nanotube-reinforced composite plates using a numerical strategy", Physica E: Low Dimens. Syst. Nanostruct., 69, 294-305. https://doi.org/10.1016/j.physe.2015.01.011.   DOI
41 Batou, B., Nebab, M., Bennai, R., AitAtmane, H., Tounsi, A., Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.   DOI
42 Belmahi, S., Zidour, M. and Meradjah, M. (2019), "Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory", Adv. Aircraft Spacecraft Sci., 6(1), 1-18. http://dx.doi.org/10.12989/aas.2019.6.1.001.   DOI
43 Bensattalah, T., Zidour, M. and Daouadji, T.H. (2018), "Analytical analysis for the forced vibration of CNT surrounding elastic medium including thermal effect using nonlocal Euler-Bernoulli theory", Adv. Mater. Res., 7(3), 163-174. https://doi.org/10.12989/amr.2018.7.3.163.   DOI
44 Bensattalah, T., Zidour, M. and Daouadji, T.H. (2019), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng., 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021.
45 Mehar, K. and Panda, S.K. (2018), "Elastic bending and stress analysis of carbon nanotube-reinforced composite plate: Experimental, numerical, and simulation", Adv. Polym. Technol., 37, 1643-1657. https://doi.org/10.1002/adv.21821.   DOI
46 Lei, X.Z., Liew, K.M. and Yu, J.L. (2013), "Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method", Compos. Struct., 98, 160-168. https://doi.org/10.1016/j.compstruct.2012.11.006.   DOI
47 Lei, X.Z., Liew, K.M. and Yu, J.L. (2013), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment", Compos. Struct., 106, 128-138. https://doi.org/10.1016/j.compstruct.2013.06.003.   DOI
48 Lei, X.Z., Liew, K.M. and Yu, J.L. (2013), "Large deflection analysis of functionally graded carbon nanotube reinforced composite plates by the element-free kp-Ritz method", Comput. Meth. Appl. Mech. Eng., 256, 189-199. https://doi.org/10.1016/j.cma.2012.12.007.   DOI
49 Mirzaei, M. and Kiani, Y. (2016), "Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout", Beilstein J. Nanotechnol., 7, 511-523. https://doi.org/10.3762/bjnano.7.45.   DOI
50 Natarajan, S., Haboussi, M. and Manickam, G. (2014), "Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite facesheets", Compos. Struct., 113, 197-207. https://doi.org/10.1016/j.compstruct.2014.03.007.   DOI
51 Phung-Van, P., Abdel-Wahab, M. and Liew, K.M., Bordas, S.P.A. and Nguyen-Xuan, H. (2015), "Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory", Compos. Struct., 123, 137-149. https://doi.org/10.1016/j.compstruct.2014.12.021.   DOI
52 Shams, S.H., Soltani, B. and MemarArdestani, M. (2016), "The effect of elastic foundations on the buckling behavior of functionally graded carbon nanotube-reinforced composite plates in thermal environments using a meshfree method", J. Solid Mech., 8, 262-279.
53 Rafiee, M., He, X.Q. and Liew, K.M. (2014), "Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced composite plates with initial geometric imperfection", Int. J. Nonlin. Mech., 59, 37-45. https://doi.org/10.1016/j.ijnonlinmec.2013.10.011.   DOI
54 Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752.   DOI
55 Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A., Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.   DOI
56 Shahsavari, D., Karami, B. and Janghorban, M. (2019), "On buckling analysis of laminated composite plates using a nonlocal refined four-variable model", Steel Compos. Struct., 32(2), 173-187. http://dx.doi.org/10.12989/scs.2019.32.2.173.   DOI
57 Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.   DOI
58 Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91, 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.   DOI
59 Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates", Mater. Des., 31, 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048.   DOI
60 Alibeigloo, A. (2013), "Static analysis of functionally graded carbon nanotube-reinforced composite plate embedded in piezoelectric layers by using theory of elasticity", Compos. Struct., 95, 612-622. https://doi.org/10.1016/j.compstruct.2017.06.015.   DOI