• Title/Summary/Keyword: Nanotube electrodes

Search Result 141, Processing Time 0.024 seconds

Development of an electron source using carbon nanotube field emittes for a high-brightness X-ray tube (탄소나노튜브를 이용한 고휘도 X-선원용 전자빔원 개발)

  • Kim, Seon-Kyu;Heo, Sung-Hwan;Cho, Sung-Oh
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.252-257
    • /
    • 2005
  • A high-brightness electron beam source for a microfocus X-ray tube has been fabricated using a carbon-nanotube (CNT) field emitter. The electron source consists of cathode that includes a CNT field emitter, a beam-extracting grid, and an anode that accelerates that electron beam. The microfocus X-ray tube requires an electron beam with the diameter of less than 5 $\mu$m and beam current of higher than 30 $\mu$A at the position of the X-ray target. To satisfy the requirements, the geometries of the field emitter tips and the electrodes of the gun was optimized by calculating the electron trajectories and beam spatial profile with EGUN code. The CNT tips were fabricated with successive steps: a tungsten wire with the diameter of 200 $\mu$m was chemically etched and was subsequently coated with CNTs by chemical vapor deposition. The experiments of electron emission at the fabricated CNT tips were performed. The design characteristics and basic experimental results of the electron source are reported.

Micro-Spot Atmospheric Pressure Plasma Production for the Biomedical Applications

  • Hirata, T.;Tsutsui, C.;Yokoi, Y.;Sakatani, Y.;Mori, A.;Horii, A.;Yamamoto, T.;Taguchi, A.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.44-45
    • /
    • 2010
  • We are currently conducting studies on culturing and biocompatibility assessment of various cells such as neural stem cells and induced pluripotent stem cells(IPS cells) on carbon nanotube (CNT), on nerve regeneration electrodes, and on silicon wafers with a focus on developing nerve integrated CNT based bio devices for interfacing with living organisms, in order to develop brain-machine interfaces (BMI). In addition, we are carried out the chemical modification of carbon nanotube (mainly SWCNTs)-based bio-nanosensors by the plasma ion irradiation (plasma activation) method, and provide a characteristic evaluation of a bio-nanosensor using bovine serum albumin (BSA)/anti-BSA binding and oligonucleotide hybridization. On the other hand, the researches in the case of "novel plasma" have been widely conducted in the fields of chemistry, solid physics, and nanomaterial science. From the above-mentioned background, we are conducting basic experiments on direct irradiation of body tissues and cells using a micro-spot atmospheric pressure plasma source. The device is a coaxial structure having a tungsten wire installed inside a glass capillary, and a grounded ring electrode wrapped on the outside. The conditions of plasma generation are as follows: applied voltage: 5-9 kV, frequency: 1-3 kHz, helium (He) gas flow: 1-1.5 L/min, and plasma irradiation time: 1-300 sec. The experiment was conducted by preparing a culture medium containing mouse fibroblasts (NIH3T3) on a culture dish. A culture dish irradiated with plasma was introduced into a $CO_2$-incubator. The small animals used in the experiment involving plasma irradiation into living tissue were rat, rabbit, and pick and are deeply anesthetized with the gas anesthesia. According to the dependency of cell numbers against the plasma irradiation time, when only He gas was flowed, the growth of cells was inhibited as the floatation of cells caused by gas agitation inside the culture was promoted. On the other hand, there was no floatation of cells and healthy growth was observed when plasma was irradiated. Furthermore, in an experiment testing the effects of plasma irradiation on rats that were artificially given burn wounds, no evidence of electric shock injuries was found in the irradiated areas. In fact, the observed evidence of healing and improvements of the burn wounds suggested the presence of healing effects due to the growth factors in the tissues. Therefore, it appears that the interaction due to ion/radicalcollisions causes a substantial effect on the proliferation of growth factors such as epidermal growth factor (EGF), nerve growth factor (NGF), and transforming growth factor (TGF) that are present in the cells.

  • PDF

Programmed APTES and OTS Patterns for the Multi-Channel FET of Single-Walled Carbon Nanotubes (SWCNT 다중채널 FET용 표면 프로그램된 APTES와 OTS 패턴을 이용한 공정에 대한 연구)

  • Kim, Byung-Cheul;Kim, Joo-Yeon;An, Ho-Myoung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.1
    • /
    • pp.37-44
    • /
    • 2015
  • In this paper, we have investigated a selective assembly method of single-walled carbon nanotubes (SWCNTs) on a silicon substrate using only photolithographic process and then proposed a fabrication method of field effect transistors (FETs) using SWCNT-based patterns. The aminopropylethoxysilane (APTES) patterns, which are formed for positively charged surface molecular patterns, are utilized to assemble and align millions of SWCNTs and we can more effectively assemble on a silicon (Si) surface using this method than assembly processes using only the 1-octadecyltrichlorosilane (OTS). We investigated a selective assembly method of SWCNTs on a Si surface using surface-programmed APTES and OTS patterns and then a fabrication method of FETs. photoresist(PR) patterns were made using photolithographic process on the silicon dioxide (SiO2) grown Si substrate and the substrate was placed in the OTS solution (1:500 v/v in anhydrous hexane) to cover the bare SiO2 regions. After removing the PR, the substrate was placed in APTES solution to backfill the remaining SiO2 area. This surface-programmed substrate was placed into a SWCNT solution dispersed in dichlorobenzene. SWCNTs were attracted toward the positively charged molecular regions, and aligned along the APTES patterns. On the contrary, SWCNT were not assembled on the OTS patterns. In this process, positively charged surface molecular patterns are utilized to direct the assembly of negatively charged SWCNT on SiO2. As a result, the selectively assembled SWCNT channels can be obtained between two electrodes(source and drain electrodes). Finally, we can successfully fabricate SWCNT-based multi-channel FETs by using our self-assembled monolayer method.

Preparation and Electrochemical Properties of Freestanding Flexible S/CNT/NiO Electrodes for Li-S Batteries (리튬-황 전지용 프리스탠딩 플렉서블 S/CNT/NiO 전극의 제조 및 전기화학적 특성)

  • Shin, Yun Jung;Lee, Won Yeol;Kim, Tae Yun;Moon, Seung-Guen;Jin, En Mei;Jeong, Sang Mun
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.184-192
    • /
    • 2022
  • Porous NiO synthesized via hydrothermal synthesis was used in the electrodes of lithium-sulfur batteries to inhibit the elution of lithium polysulfide. The electrode of the lithium-sulfur battery was manufactured as a freestanding flexible electrode using an economical and simple vacuum filtration method without a current collector and a binder. The porous NiO-added S/CNT/NiO electrode exhibited a high initial discharge capacity of 877 mA h g-1 (0.2 C), which was 125 mA h g-1 higher than that of S/CNT, and also showed excellent retention of 84% (S/CNT: 66%). This is the result of suppressing the dissolution of lithium polysulfide into the electrolyte by the strong chemical bond between NiO and lithium polysulfide during the charging and discharging process. In addition, for the flexibility test of the S/CNT/NiO electrode, the 1.6 × 4 cm2 pouch cell was prepared and exhibited stable cycle characteristics of 620 mA h g-1 in both the unfolded and folded state.

Synthesis of Graphene and Carbon Nanotubes Hybrid Structure and Their Electrical Characterization

  • Jeong, Sang-Hui;Song, U-Seok;Lee, Su-Il;Kim, Yu-Seok;Cha, Myeong-Jun;Kim, Seong-Hwan;Jo, Ju-Mi;Jeon, Cheol-Ho;Jeong, Min-Uk;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.404-404
    • /
    • 2012
  • 저차원계 탄소 동소체는 특유의 구조에서 기인하는 우수한 물리적 성질로 인해 각광받고 있는 물질이다. 탄소원자가 육각형 격자 모양을 지닌 2차원계 물질인 그래핀(graphene)은 뛰어난 전기적, 물리적, 광학적 성질로 인해 전계효과 트랜지스터(field effect transistors), 투명전극(transparent electrodes), 에너지 저장체, 복합체, 화학/바이오 센서 등 다양한 분야에서 활용을 위한 연구가 진행되고 있다. 또한 그래핀이 튜브형태로 말려있는 1차원계 물질인 탄소나노튜브(carbon nanotube)의 전기적, 열적, 기계적 성질은 이를 전계방출 디스플레이(field emission display), 전도성 플라스틱, 가스 저장체, 슈퍼 커패시터 등에 적용가능하게 한다. 최근 2차원계 물질인 그래핀과 1차원계 물질인 탄소나노튜브의 장점을 극대화하기 위한 복합 나노 구조에 대한 다양한 연구가 진행되고 있는 추세이다[1-5]. 본 연구에서 그래핀-탄소나노튜브 혼성 구조의 제작은 다음과 같이 진행되었다. 우선 열 화학기상증착법(thermal chemical vapor deposition)을 이용하여 그래핀을 합성하였다. 합성된 그래핀은 메타크릴산메탈 수지(polymetylmethacrylate; PMMA)를 이용한 전사(transfer)방법을 이용하여 원하는 기판에 위치시키고, 직류 마그네트론 스퍼터링(DC magnetron sputtering)을 이용하여 탄소나노튜브의 합성을 위한 촉매층을 증착하였다. 이후 열 화학기상증착법을 이용하여 그래핀 위에 탄소나노튜브를 합성함으로써 그래핀-탄소나노튜브 혼성 구조를 제작하였다. 합성된 그래핀-탄소나노튜브의 구조적 특징은 주사 전자 현미경(scanning electron microscopy)을 통해 확인하였고, 촉매의 표면 형상 및 화학적 상태는 원자힘 현미경(atomic force microscopy)과 X선 광전자 분광법(X-ray photoelectron spectroscopy)을 통해 확인하였다. 또한 제작된 그래핀-탄소나노튜브의 전기적 특성 측정을 통해 나노전자소자로의 응용가능성을 조사하였다.

  • PDF

Characteristics of Pt, Pt-Ru and Pt-CeO2 Catalysts Supported on Carbon Nanotubes for Methanol Fuel Cell (탄소 나노튜브에 담지된 Pt, Pt-Ru 및 Pt-CeO2 메탄올 연료전지 촉매의 특성)

  • Hwang, Gui-Sung;Lee, Rhim-Youl
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.138-143
    • /
    • 2011
  • Nanosized Pt, Pt-Ru and Pt-$CeO_2$ electrocatalysts supported on acid-treated carbon nanotube (CNT) were synthesized by microwave-assisted heating of polyol process using $H_2Cl_6Pt{\cdot}6H_2O$, $RuCl_3$, $CeCl_3$ precursors, respectively, and were characterized by XRD and TEM. And then the electrochemical activity of methanol oxidation for catalyst/CNT nanocomposite electrodes was investigated. The microwave assisted polyol process produced the nano-sized crystalline catalysts particles on CNT. The size of Pt supported on CNT was 7~12 nm but it decreased to 3~5 nm in which 10wt% sodium acetate was added as a stabilizer during the polyol process. This fine Pt catalyst particles resulted in a higher current density for Pt/CNT electrode. It was also found that 10 nm size of PtRu alloys were formed by polyol process and the onset potential decreased with Ru addition. Cyclic voltammetry analysis revealed that the $Pt_{75}Ru_{25}/CNT$ electrode had the highest electrochemical activity owing to a higher ratio of the forward to reverse anodic peak current. And the chronoamperemetry test showed that $Pt_{75}Ru_{25}$ catalyst had a good catalyst stability. The activity of Pt was also found to be improved with the addition of $CeO_2$.

Metal Grids Embedded Transparent Conductive Electrode with Flexibility and Its Applications

  • Jung, Sunghoon;Lee, Seunghun;Kim, Jong-Kuk;Kang, Jae-Wook;Kim, Do-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.314-314
    • /
    • 2013
  • Recently, flexibility is one of the hottest issues in the field of electronic devices. For flexible displays or solar cells, a development of transparent conductive electrodes (TCEs) with flexibility, bendability and foldability is an essential element. Hundreds of nanometers indium-tin-oxide (ITO) films have been widely used and commercialized as a transparent electrode, but their brittleness make them difficulty to apply flexible electronics. Many researchers have been studying for flexible TCEs such as a few layers of graphene sheets, carbon nanotube networks, conductive polymer films and combinations among them. Although gained flexibility, their transmittance and resistivity have not reached those of commercialized ITO films. Metal grids electrode cannot act as TCEs only, but they can be used to lower the resistance of TCEs with few losses of transmittance. However, the possibility of device shortage will be rise at the devices with metal grids because a surface flatness of TCEs may be deteriorated when metal grids are introduced using conventional methods. In our research, we have developed hybrid TCEs, which combined tens of nanometers ITO film and metal grids which are embedded in flexible substrate. They show $13{\Omega}$/${\Box}f$ sheet resistance with 94% of transmittance. Moreover, the sheet resistance was maintained up to 1 mm of bending radius. Also, we have verified that flexible organic light emitting diodes and organic solar cells with the TCEs showed similar performances compared to commercial ITO (on glass substrate) devices.

  • PDF

A wireless impedance analyzer for automated tomographic mapping of a nanoengineered sensing skin

  • Pyo, Sukhoon;Loh, Kenneth J.;Hou, Tsung-Chin;Jarva, Erik;Lynch, Jerome P.
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.139-155
    • /
    • 2011
  • Polymeric thin-film assemblies whose bulk electrical conductivity and mechanical performance have been enhanced by single-walled carbon nanotubes are proposed for measuring strain and corrosion activity in metallic structural systems. Similar to the dermatological system found in animals, the proposed self-sensing thin-film assembly supports spatial strain and pH sensing via localized changes in electrical conductivity. Specifically, electrical impedance tomography (EIT) is used to create detailed mappings of film conductivity over its complete surface area using electrical measurements taken at the film boundary. While EIT is a powerful means of mapping the sensing skin's spatial response, it requires a data acquisition system capable of taking electrical impedance measurements on a large number of electrodes. A low-cost wireless impedance analyzer is proposed to fully automate EIT data acquisition. The key attribute of the device is a flexible sinusoidal waveform generator capable of generating regulated current signals with frequencies from near-DC to 20 MHz. Furthermore, a multiplexed sensing interface offers 32 addressable channels from which voltage measurements can be made. A wireless interface is included to eliminate the cumbersome wiring often required for data acquisition in a structure. The functionality of the wireless impedance analyzer is illustrated on an experimental setup with the system used for automated acquisition of electrical impedance measurements taken on the boundary of a bio-inspired sensing skin recently proposed for structural health monitoring.

[ $NO_2$ ] Gas Sensing Characteristics of Carbon Nanotubes (탄소 나노튜브를 이용한 이산화질소 감지 센서의 특성)

  • Lee R. Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.227-233
    • /
    • 2005
  • Carbon nanotubes (CNT) which were grown, on the alumina substrate with a pair of comb-type Au electrodes, by plasma enhanced chemical vapor deposition have been investigated for $NO_2$ gas sensor. The electrical resistance of CNT film decreased with temperature, indicating a semiconductor type of CNT, and also the resistance of CNT sensor decreased with increasing $NO_2$ concentration. Upon exposure to $NO_2$ gas, the electrical resistance of CNT film sensor rapidly decreased within 3 minutes, and then showed a constant value after $20\~30$ minutes. It is found that the sensitivity of CNT sensor has been improved by air oxidation. The CNT sensor oxidized at $450^{\circ}C$ for 30 minutes showed higher sensitivity value than that without oxidation by $27\%$, even for a low 250 ppb $NO_2$ concentration at operating temperature of $200^{\circ}C$. But it needs a recovery time more than 20 minutes for reuse after detection of $NO_2$ gas.

  • PDF

Electromechanical Properties of Conductive MWCNT Film Deposited on Flexible Substrate Affected by Concentration of Dispersing Agent (분산제 농도에 따른 MWCNT 전도성 유연필름의 전기-기계적 특성)

  • HwangBo, Yun;Kang, Yong-Pil;Kim, Jae-Hyun;Kim, Duck-Jong;Lee, Hak-Joo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.517-521
    • /
    • 2012
  • Carbon nanotubes (CNTs) have been regarded as a promising material for the fabrication of flexible conductors such as transparent electrodes, flexible heaters, and transparent speakers. In this study, a multiwalled carbon nanotube (MWCNT) film was deposited on a polyethylene terephthalate (PET) substrate using a spraying technique. MWCNTs were dispersed in water using sodium dodecyl sulfate (SDS). To evaluate the effect of the weight ratio between SDS and MWCNTs on the electromechanical properties of the film, direct tensile tests and optical strain measurement were conducted. It was found that the CNT film hardly affected the mechanical behavior of CNT/PET composite films, while the electrical behavior of the CNT film was strongly affected by the SDS concentration in the CNT film. The electrical resistance of CNT/PET films gradually increased with the strain applied to the PET substrate, even up to a large strain that ruptured the substrate.