• 제목/요약/키워드: Nanostructured surface

검색결과 182건 처리시간 0.064초

Tissue and Immune Responses on Implanted Nanostructured Biomaterials

  • Khang, Dong-Woo;Kang, Sang-Soo;Nam, Tae-Hyun
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.47.1-47.1
    • /
    • 2009
  • Nanostructured biomaterials have increased those potential for utilizing in many medical applications. In this study, benefit of nanotechnology for the response with biological targets will be described in terms of size, effective surface area and surface energy (physical aspect). Also, correlations between physical and biological interactions (greater protein adsorption on nano surface roughness) will be discussed for understanding biocompatibility of nanostructured biomaterials including carbon nanotube composites and nanostructured titanium surfaces. In the application parts, various major tissue cells, such as bone, cartilage, vascular and bladder cell responses will be discussed with suggested nanomaterials. Lastly, immune responses with macrophage (adhesion and several major cytokines) on nanostructured biomaterials will be described for evasive immune response.

  • PDF

Inkjet-print patterned transparent conductive CNT films

  • Kim, Mun-Ja;Shin, Jun-Ho;Lee, Jong-Hak;Lee, Hyun-Chul;Yoo, Ji-Beom
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1119-1121
    • /
    • 2006
  • Using a chemical radical we modified the surface property of PET substrates. The chemically treated substrate surface improved dispersion of CNTs on substrate and provides suitable adhesion of CNTs to substrate. In addition, an ink-jet printed patterning technique effectively improved the transparency of transparent conductive CNT composite films.

  • PDF

The Effect of Catalysts merged with alumina on the Growing Characteristics of Carbon Nanotubes using AAO templates

  • Lee, In-Wha;Lee, Tae-Young;Yang, Ji-Hoon;Ha, Byoung-Ho;Yoo, Ji-Beom;Kim, Seong-Kyu;Park, Chong-Yun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.697-700
    • /
    • 2002
  • Porous anodic aluminum oxide(AAO) templates prepared by anodizing method were used for growing multiwalled carbon nanotubes(CNTs). AAO templates with the homogeneous pore diameter and length were obtained by two step anodizing technique. Using AAO templates, vertically well-ordered two-dimensional carbon nanotube arrays were fabricated. We investigated the field emission property of CNTs grown using different catalyst metals in vacuum chamber (<$10^{-7}$ Torr) on AAO Template. To explain the different emission property, the surface reaction between catalysts and alumina pores which inserted carbon species of $C_2H_2$ using High resolution transmission electron microscopy (HRTEM) was studied.

  • PDF

Fabrication of Flexible Surface-enhanced Raman-Active Nanostructured Substrates Using Soft-Lithography

  • 박지윤;장석진;여종석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.411-411
    • /
    • 2012
  • Over the recent years, surface enhanced Raman spectroscopy (SERS) has dramatically grown as a label-free detecting technique with the high level of selectivity and sensitivity. Conventional SERS-active nanostructured layers have been deposited or patterned on rigid substrates such as silicon wafers and glass slides. Such devices fabricated on a flexible platform may offer additional functionalities and potential applications. For example, flexible SERS-active substrates can be integrated into microfluidic diagnostic devices with round-shaped micro-channel, which has large surface area compared to the area of flat SERS-active substrates so that we may anticipate high sensitivity in a conformable device form. We demonstrate fabrication of flexible SERS-active nanostructured substrates based on soft-lithography for simple, low-cost processing. The SERS-active nanostructured substrates are fabricated using conventional Si fabrication process and inkjet printing methods. A Si mold is patterned by photolithography with an average height of 700 nm and an average pitch of 200 nm. Polydimethylsiloxane (PDMS), a mixture of Sylgard 184 elastomer and curing agnet (wt/wt = 10:1), is poured onto the mold that is coated with trichlorosilane for separating the PDMS easily from the mold. Then, the nano-pattern is transferred to the thin PDMS substrates. The soft lithographic methods enable the SERS-active nanostructured substrates to be repeatedly replicated. Silver layer is physically deposited on the PDMS. Then, gold nanoparticle (AuNP) inks are applied on the nanostructured PDMS using inkjet printer (Dimatix DMP 2831) to deposit AuNPs on the substrates. The characteristics of SERS-active substrates are measured; topology is provided by atomic force microscope (AFM, Park Systems XE-100) and Raman spectra are collected by Raman spectroscopy (Horiba LabRAM ARAMIS Spectrometer). We anticipate that the results may open up various possibilities of applying flexible platform to highly sensitive Raman detection.

  • PDF

The Effect of Catalysts on the Growth Characteristic of Carbon Nanotubes

  • Lee, Tae-Young;Han, Jae-Hee;Choi, Sun-Hong;Yoo, Ji-Beom;Park, Chong-Yun;Jung, Tae-Won;Yu, Se-Gi;Yi, Whi-Kun;Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.666-669
    • /
    • 2002
  • Vertically aligned carbon nanotubes (CNTs) have been produced using various type of plasma enhanced chemical vapor deposition (PECVD). Catalysts such as Ni, Co, and Fe are used for growth of CNTs. To explain the effect of catalysts on the growth characteristics of CNTs, carbon species of $C_2H_2$ was observed in different catalysts using optical emission spectroscopy (OES) with theoretical calculation on the surface reaction in different catalysts.

  • PDF

산화 용해에 연이은 환원 석출을 통한 나노구조 금 표면 형성 (In-Situ Generation of Nanostructured Au Surfaces by Anodic Dissolution Followed by Cathodic Deposition)

  • 권수지;최수희;김종원
    • 전기화학회지
    • /
    • 제18권3호
    • /
    • pp.107-114
    • /
    • 2015
  • 전기화학적인 방법으로 나노구조를 지니는 금 표면을 형성하는 방법에 관한 연구는 최근 많은 연구자들의 관심을 끌고 있다. 첨가된 금 전구체를 전기화학 석출에 의해 나노구조 금 표면을 형성하는 기존 연구와는 달리, 본 연구에서는 전구체를 외부에서 첨가하지 않고 금 표면을 전기 화학적으로 변형하여 표면에 나노구조체를 형성하는 방법을 제시하였다. $Br^-$이 존재하는 인산 완충용액 전해질 하에서 금 전극에 산화전위를 가해 주면 산화 용해된 금은 $Br^-$과 결합하여 전극 표면에 전구체를 형성하는데, 이렇게 형성된 표면상의 전구체를 연이어 환원시켜 주면 실시간으로 나노구조 금 표면을 형성하는 것이 가능함을 보였다. 전극에 가해주는 전위와 시간의 조절이 전극 표면에 형성되는 금 나노구조의 모양에 미치는 영향을 체계적으로 관찰한 결과 독특한 척추 모양의 금 나노구조가 형성이 되었다. 척추 모양의 금 나노구조는 표면증강 라만 분광 활성이 높은 것으로 나타났다. 본 연구에서 제시된 방법은 전구체 없이 전기화학적으로 금 전극 표면을 변형시키는 새로운 방법으로 금 나노구조 형성에 관한 연구에 도움이 될 것으로 기대한다.