• Title/Summary/Keyword: Nanostructured material

Search Result 96, Processing Time 0.027 seconds

Multicomponent Nanostructured Materials for Separation Membranes

  • Peinemann, Klaus-Viktor
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.11-11
    • /
    • 2004
  • Under the coordination of GKSS a new European project in the field of membrane development started recently. This project focuses on the development of novel nanostructured materials for selective material transport and separation. Two classes of materials will be developed in this project: nanostructured organic/inorganic hybrid materials and functional self-organized supramolecular copolymers.(omitted)

  • PDF

Simple fabrication process and characteristic of a screen-printed triode-CNT field emission arrays for the flat lamp application

  • Jung, Y.J.;Park, J.H.;Jeon, S.Y.;Park, S.J.;Alegaonkar, P.S.;Yoo, J.B.;Park, C.Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1214-1218
    • /
    • 2006
  • We introduced simple fabrication process for field emission devices based on carbon nanotubes (CNTs) emitters. Instead of using the ITO material as a transparent electrode, a metal (Au) with thickness of 5-20nm was used. Moreover, the ITO patterning process was eliminated by depositing metal layer, before the CNT printing process. In addition, the thin metal layer on photo resist (PR) layer was used as UV block. We fabricated the CNT field emission arrays of triode structure with simple process. And I-V characteristics of field emission arrays were measured. The maximum current density of $254{\mu}A/cm2$ was achieved when the gate and the anode voltage was kept 150V and 3000V, respectively. The distance between anode and cathode was kept constant.

  • PDF

CO2 Reduction and C2H4 Production Using Nanostructured Gallium Oxide Photocatalyst (산화갈륨 나노구조 광촉매 특성을 이용한 이산화탄소 저감 및 에틸렌 생성 작용)

  • Seo, Dahee;Ryou, Heejoong;Seo, Jong Hyun;Hwang, Wan Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.308-310
    • /
    • 2022
  • Ultrawide bandgap gallium oxide (Ga2O3) semiconductors are known to have excellent photocatalytic properties due to their high redox potential. In this study, CO2 reduction is demonstrated using nanostructured Ga2O3 photocatalyst under ultraviolet (254 nm) light source conditions. After the CO2 reduction, C2H4 remained as a by-product in this work. Nanostructured Ga2O3 photocatalyst also showed an excellent endurance characteristic. Photogenerated electron-hole pairs boosted the CO2 reduction to C2H4 via nanostructured Ga2O3 photocatalyst, which is attributed to the ultrawide and almost direct bandgap characteristics of the gallium oxide semiconductor. The findings in this work could expedite the realization of CO2 reduction and a simultaneous C2H4 production using a low cost and high performance photocatalyst.

Laser-Direct Patterning of Nanostructured Metal Thin Films (나노구조 금속 박막의 레이저 직접 패터닝에 관한 연구)

  • Shin, Hyunkwon;Lee, Hyeongjae;Yoo, Hyeonggeun;Lim, Ki-Soo;Lee, Myeongkyu
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.163-168
    • /
    • 2010
  • We here describe the laser-direct patterning of nanostructured metal thin films. This method involves light-matter interaction in which a pulsed laser beam impinging on the film generates a thermoelastic force that plays a role to detach the film from the substrate or underlying layers. A moderate cohesion of the nanostructured film enables localized desorption of the material upon irradiation by a spatiallymodulated laser beam, giving good fidelity with the transfered pattern. This photoresist-free process provides a simple high-resolution scheme for patterning metal thin films.

The Effect of Rapid Consolidation of Nanostructured MoSi2-SiC Composite on its Mechanical Properties (나노구조 몰리브덴늄실리사이드-실리콘카바이드 복합재료의 급속소결과 기계적 성질)

  • Ko, In-Yong;Chae, Seung-Myoung;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.417-423
    • /
    • 2010
  • A dense nanostructured MoSi$_{2}$-SiC composite was synthesized by a pulsed current activated combustion synthesis method within 2 min of one step from mechanically activated powders of Mo$_{2}$C and Si. Simultaneous combustion synthesis and consolidation were accomplished under the combined effects of a pulsed current and mechanical pressure. Highly dense MoSi$_{2}$-SiC with a relative density of up to 98% was produced under simultaneous application of an 80 MPa pressure and pulsed current. The average grain size and mechanical properties of the composite were investigated.

Highly Sensitive Gas Sensors Based on Nanostructured $TiO_2$ Thin Films

  • Jang, Ho-Won;Mun, Hui-Gyu;Kim, Do-Hong;Sim, Yeong-Seok;Yun, Seok-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.16.1-16.1
    • /
    • 2011
  • $TiO_2$ is a promising material for gas sensors. To achieve high sensitivities, the material should exhibit a large surface-to-volume ratio and possess the high accessibility of the gas molecules to the surface. Accordingly, a wide variety of porous $TiO_2$ nanomaterials synthesized by wet-chemical methods have been reported for gas sensor applications. Nonetheless, achieving the large-area uniformity and comparability with well-established semiconductor production processes of the methods is still challenging. An alternative method is soft-templating which utilizes nanostructured inorganic or organic materials as sacrificial templates for the preparation of porous materials. Fabrication of macroporous $TiO_2$ films and hollow $TiO_2$ tubes by soft-templating and their gas sensing applications have been reported recently. In these porous materials composed of assemblies of individual micro/nanostructures, the form of links or necks between individual micro/nanostructures is a critical factor to determine gas sensing properties of the material. However, a systematic study to clarify the role of links between individual micro/nanostructures in gas sensing properties of a porous metal oxide matrix is thoroughly lacking. In this work, we have demonstrated a fabrication method to prepare highly-ordered, embossed $TiO_2$ films composed of anatase $TiO_2$ hollow hemispheres via soft-templating using polystyrene beads. The form of links between hollow hemispheres could be controlled by $O_2$ plasma etching on the bead templates. This approach reveals the strong correlation of gas sensitivity with the form of the links. Our experimental results highlight that not only the surface-to-volume ratio of an ensemble material composed of individual micro/nanostructures but also the links between individual micro/nanostructures play a critical role in evaluating the sensing properties of the material. In addition to this general finding, the facileness, large-scale productivity, and compatability with semiconductor production process of the proposed fabrication method promise applications of the embossed $TiO_2$ films to high-quality sensors.

  • PDF

A Novel Flowerlike Nanostructured CeO2 for Sustainable Energies

  • Li, Hong;Chen, Liquan
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.66-70
    • /
    • 2010
  • This article presents a brief review of our recent studies on flowerlike nanostructured $CeO_2$ materials. These materials are monodispersed microspheres with peony appearance, open mesoporous structure, large specific surface area and nano-crystalline feature. The applications of this type of novel material to SOFC, ethanol steam reforming and CO oxidation are introduced.