• Title/Summary/Keyword: Nanostructured electrode

Search Result 49, Processing Time 0.026 seconds

Nanostructured Metal Organic Framework Modified Glassy Carbon Electrode as a High Efficient Non-Enzymatic Amperometric Sensor for Electrochemical Detection of H2O2

  • Naseri, Maryam;Fotouhi, Lida;Ehsani, Ali
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.28-36
    • /
    • 2018
  • Metal-organic frameworks have recently been considered very promising modifiers in electrochemical analysis due to their unique characteristics among which tunable pore sizes, crystalline ordered structures, large surface areas and chemical tenability are worth noting. In the present research, $Cu(btec)_{0.5}DMF$ was electrodeposited on the surface of glassy carbon electrode at room temperature under cathodic potential and was initially used as the active materials for the detection of $H_2O_2$. The cyclic voltammogram of $Cu(btec)_{0.5}DMF$ modified GC electrode shows distinct redox peaks potentials at +0.002 and +0.212 V in 0.1 M phosphate buffer solution (pH 6.5) corresponding to $Cu^{(II)}/Cu^{(I)}$ in $Cu(btec)_{0.5}DMF$. Acting as the electrode materials of a non-enzymatic $H_2O_2$ biosensor, the $Cu(btec)_{0.5}DMF$ brings about a promising electrocatalytic performance. The high electrocatalytic activity of the $Cu(btec)_{0.5}DMF$ modified GC electrode is demonstrated by the amperometric response towards $H_2O_2$ reduction with a wide linear range from $5{\mu}M$ to $8000{\mu}M$, a low detection limit of $0.865{\mu}M$, good stability and high selectivity at an applied potential of -0.2 V, which was higher than some $H_2O_2$ biosensors.

Nanocomposite Electrode Materials Prepared from Pinus roxburghii and Hematite for Application in Supercapacitors

  • SHRESTHA, Dibyashree
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.219-236
    • /
    • 2022
  • Wood-based nanocomposite electrode materials were synthesized for application in supercapacitors by mixing nanostructured hematite (Fe2O3) with highly porous activated carbon (AC) produced from the wood-waste of Pinus roxburghii. The AC was characterized using various instrumental techniques and the results showed admirable electrochemical properties, such as high surface area and reasonable porosity. Firstly, AC was tested as an electrode material for supercapacitors and it showed a specific capacitance of 59.02 Fg-1 at a current density of 1 Ag-1, cycle life of 84.2% after 1,000 cycles (at a current density of 3 Ag-1), and energy density of 5.1 Wh/kg at a power density of 135 Wkg-1. However, when the AC was composited with different ratios of Fe2O3 (1:1, 2:1, and 1:2), there was an overall improvement in its electrochemical performance. Among the 3 ratios, 2:1 (AC:Fe2O3) had the best specific capacitance of 102.42 Fg-1 at 1 Ag-1, cycle life of 94.4% capacitance after 1,000 cycles (at a current density of 3 Ag-1), and energy density of 8.34 Wh/kg at a power density of 395.15 Wkg-1 in 6 M KOH electrolyte in a 3-electrode experimental setup with a high working voltage of 1.55 V. Furthermore, when Fe2O3 was doubled, 1:2 (AC:Fe2O3), the electrochemical capacitive performance of the electrode twisted and deteriorated due to either the accumulation of Fe2O3 particles within the composite or higher bulk resistance value of pure Fe2O3.

Recent Advances on Multi-Dimensional Nanocarbons for Superapacitors: A Review

  • Bae, Joonho
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.251-259
    • /
    • 2018
  • In general, the charge storage characteristics and overall performance of electrochemical energy devices (such as lithiumion batteries and supercapacitors) significantly depends on the structural and geometrical factors of the electrodes' active materials. The most widely used active materials of electrochemical energy storage devices are based on carbons of various forms. Each carbon type has drawbacks and advantages when used as the electrode material. Studies have been recently carried out to combine different types of carbons, in particular nanostructured carbons, in order to overcome the structure-originated limitations and thus enhance the overall electrochemical performances. In this feature article, we report the recent progress on the development of this novel class of materials (multidimensional nanocarbons), and their applications for supercapacitors. Multidimensional nanocarbons include graphenes/carbon nanotubes (CNTs), CNTs/carbon films, CNTs/fullerenes, and ternary carbon nanostructures. Various applications using these multidimensional nanocarbons have been proposed and demonstrated in the literature. Owing to the recent extensive studies on electrochemical energy storage devices and considering that carbons are their most fundamental electrode materials, the number of reports on nanocarbons employed as electrodes of the electrochemical energy storage devices is rapidly increasing. Recently, numerous multidimensional nanocarbons have been designed, prepared, and utilized as electrodes of electrochemical capacitors or supercapacitors, which are considered next-generation energy devices owing to their unique merits compared to the conventional structures. In this review, we summarize the basic motivations, preparation methods, and resultant supercapacitor performances of each class of multidimensional nanocarbons published in the literature, focusing on recent reports.

Nanostructured Photoelectrode Materials for Improving Light-Harvesting Properties in DSSCs

  • Jeong, Hyeon-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.7.2-7.2
    • /
    • 2011
  • Photoelectrochemical solar cells such as dye-sensitized cells (DSSCs), which exhibit high performance and are cost-effective, provide an alternative to conventional p-n junction photovoltaic devices. However, the efficiency of such cells plateaus at 11~12%, in contrast to their theoretical value of 33%. The majority of research has focused on improving energy conversion efficiency of DSSC by controlling nanostructure and exploiting new materials in photoelectrode consisting of semiconducting oxide nanoparticles and a transparent conducting oxide electrode (TCO). In this presentation, we introduce monodisperesed TiO2 nanoparticles prepared by forced hydrolysis method and their superiority as photoelectrode materials was characterized with aids of optical and electrochemical analysis. Inverse opal-based scattering layers containing highly crystalline anatase nanoparticles are also introduced and their feasibility for use as bi-functional light scattering layer is discussed in terms of optical reflectance and charge generation properties as a function of optical wavelength.

  • PDF

Preparation and Characterization of Ordered Nanostructured Cobalt Films via Lyotropic Liquid Crystal Templated Electrodeposition Method

  • Al-Bishri, Hassan M.;El-Hallag, Ibrahim S.;El-Mossalamy, Elsayed H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3730-3734
    • /
    • 2010
  • A simple, inexpensive and less time consuming electrochemical methods were carried out to prepare ordered mesoporous cobalt films. Ordered mesoporous cobalt films were successfully synthesized by templated electrodepostion of hexagonal $H_1$-e Co ion. The electrodeposited mesopores films were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), low angle X-ray diffraction (XRD) and voltammetric methods. The applicability of thin films as high - performance super capacitors electrode materials is demonstrated electrochemically using cyclic voltammetry (CV) technique.

The Effect of Graphene on the Electrical Properties of a Stretchable Carbon Electrode (그래핀 첨가에 따른 신축성 카본전극의 전기적 특성 변화)

  • Lee, T.W.;Park, H.H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.77-82
    • /
    • 2014
  • Stretchable electrodes are focused due to many demands for soft electronics. One of the candidates, carbon black composites have advantages of low cost, easy processing and decreasing resistivity in a certain range during stretching. However, the electrical conductivity of carbon black composites is not enough for electronic devices. Graphene is 2-dimensional nanostructured carbon based material which shows good electrical properties and flexibility. They may help to improve electrical conductivity of the carbon black composites. In this study, graphene was added to a carbon black electrode to enhance electrical properties and investigated. Electrical resistivity of graphene added carbon electrode decreased comparing with that of carbon black electrode because graphene bridged non-contacting carbon black aggregates to strengthen the conductive network. Also graphene reduced an increase in the resistance of the carbon black electrode applied to strain because they connected gap of separated carbon black aggregates and aligned along the stretching direction at the same time. In conclusion, an addition of graphene to carbon black gives two benefits on the electrical properties of carbon black composite as a stretchable electrode.

Effects of F-treatment on the Degradation of $Mg_2$Ni type Hydrogen Storage Alloy Electrode ($Mg_2$Ni계 수소저장합금전극의 퇴화거동에 미치는 불화 처리 영향)

  • Kim, Jun-Seong;Choe, Jae-Ung;Lee, Chang-Rae;Gang, Seong-Gun
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.294-299
    • /
    • 2001
  • Effects of the surface fluorination on the electrochemical charge-discharge properties of $Mg_2$Ni electrode in Ni-MH batteries fabricated by mechanical alloying were investigated. After 20h ball milling, Mg and Ni powder formed nanocrystalline $Mg_2$Ni. Discharge capacity of this alloy increased greatly at first one cycle, but due to the formation of Mg(OH)$_2$ passive layer, it showed a rapid degradation in alkaline solution within 10cyc1es. In case of 6N KOH +xN KF electrolyte (x = 0.5, 1, 2), a continuous and stable fluorinated layer formed by adding excess F$^{[-10]}$ ion, increased durability of $Mg_2$Ni electrode greatly and high rate discharge capability(90-100mAh/g). 2N KF addition led to the highest durability of all tested here. The reason of the improvement is due to thin MgF$_2$, which can prevent the $Mg_2$Ni electrode from forming Mg(OH)$_2$layer that is the main cause of degradation.

  • PDF

Transparent Capacitor of the $Bi_2Mg_{2/3}Nb_{4/3}O_7$(BMNO)-Bi Nanostructured Thin Films grown at Room Temperature

  • Song, Hyeon-A;Na, Sin-Hye;Jeong, Hyeon-Jun;Yun, Sun-Gil
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.20.2-20.2
    • /
    • 2011
  • BMNO dielectric materials with a pyrochlore structure have been chosen and they have quite high dielectric constants about 210 for the bulk material. In the case of thin films, 200-nm-thick BMNO films deposited at room temperature showed a low leakage current density of about $10^{-8}\;A/cm^2$ at 3 V and a dielectric constant of about 45 at 100 kHz. Because high dielectric constant BMNO thin films kept an amorphous phase at a high temperature above $900^{\circ}C$. High dielectric constant BMNO thin films grown at room temperature have many applications for flexible electronic devices. However, because the dielectric constant of the BMNO films deposited at room temperature is still low, percolative BMNO films (i.e., those were grown in a pure argon atmosphere) sandwiched between ultra-thin BMNO films grown in an oxygen and argon mixture have greater dielectric constants than standard BMNO films. However, they still showed a leakage problem at a high voltage application. Accordingly, a new nano-structure that uses BMNO was required to construct the films with a dielectric constant higher than that of its bulk material. The fundamental reason that the BMNO-Bi nano-composite films grown by RF-Sputtering deposition had a dielectric constant higher than that of the bulk material was addressed in the present study. Also we used the graphene as bottom electrode instead of the Cu bottom electrode. At first, we got the high leakage current density value relatively. but through this experiment, we could get improved leakage current density value.

  • PDF

Anode Material Nanoparticles on Carbon Materials by Electrodeposition for Stability Anodes of Lithium Ion Battery

  • Choe, Su-Jeong;U, Seon-Hwak;Lee, Ji-Hui;Park, Jin-Hwan;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.419-420
    • /
    • 2012
  • Lithium-ion battery (LIB) usually used for valuable electronic devices are extended to applications. High stability negative electrode materials for LIB were investigated using electrodeposition of nanoparticles (NPs) on the nanostructured carbon. NPs with about 70 nm diameters were evenly prepared on the graphitic carbon materials using electrodeposition process at room temperature. It was observed that the NPs were homogeneously embedded into not only external surface but bottom part of the graphitic carbon network. The graphitic carbon material covered with NPs enables facile electron transport owing to the network structure and improves structural collapse during cycling. This facile room temperature process is expected to be applicable to other anode materials such as Sn and Al for the anode of LIB.

  • PDF

Rational Design of Binder-Free Fe-Doped CuCo(OH)2 Nanosheets for High-Performance Water Oxidation

  • Patil, Komal;Jang, Su Young;Kim, Jin Hyeok
    • Korean Journal of Materials Research
    • /
    • v.32 no.5
    • /
    • pp.237-242
    • /
    • 2022
  • Designing and producing a low-cost, high-current-density electrode with good electrocatalytic activity for the oxygen evolution reaction (OER) is still a major challenge for the industrial hydrogen energy economy. In this study, nanostructured Fe-doped CuCo(OH)2 was discovered to be a precedent electrocatalyst for OER with low overpotential, low Tafel slope, good durability, and high electrochemically active surface sites at reduced mass loadings. Fe-doped CuCo(OH)2 nanosheets are made using a hydrothermal synthesis process. These nanosheets are clumped together to form a highly open hierarchical structure. When used as an electrocatalyst, the Fe-doped CuCo(OH)2 nanosheets required an overpotential of 260 mV to reach a current density of 50 mA cm-2. Also, it showed a small Tafel slope of 72.9 mV dec-1, and superior stability while catalyzing the generation of O2 continuously for 20 hours. The Fe-doped CuCo(OH)2 was found to have a large number of active sites which provide hierarchical and stable transfer routes for both electrolyte ions and electrons, resulting in exceptional OER performance.