Browse > Article
http://dx.doi.org/10.6117/kmeps.2014.21.4.077

The Effect of Graphene on the Electrical Properties of a Stretchable Carbon Electrode  

Lee, T.W. (Department of Materials Science and Engineering, Yonsei University)
Park, H.H. (Department of Materials Science and Engineering, Yonsei University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.21, no.4, 2014 , pp. 77-82 More about this Journal
Abstract
Stretchable electrodes are focused due to many demands for soft electronics. One of the candidates, carbon black composites have advantages of low cost, easy processing and decreasing resistivity in a certain range during stretching. However, the electrical conductivity of carbon black composites is not enough for electronic devices. Graphene is 2-dimensional nanostructured carbon based material which shows good electrical properties and flexibility. They may help to improve electrical conductivity of the carbon black composites. In this study, graphene was added to a carbon black electrode to enhance electrical properties and investigated. Electrical resistivity of graphene added carbon electrode decreased comparing with that of carbon black electrode because graphene bridged non-contacting carbon black aggregates to strengthen the conductive network. Also graphene reduced an increase in the resistance of the carbon black electrode applied to strain because they connected gap of separated carbon black aggregates and aligned along the stretching direction at the same time. In conclusion, an addition of graphene to carbon black gives two benefits on the electrical properties of carbon black composite as a stretchable electrode.
Keywords
Graphene; stretchable electrode; electrical property; carbon composites;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. A. Rogers, T. Someya and Y. Huang, "Materials and Mechanics for Stretchable Electronics", Science, 327, 1603 (2010).   DOI   ScienceOn
2 J. Park, S. Wang, M. Li, C. Ahn, J. K. Hyun and D. S. Kim, "Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors", Nat. Commun., 3, 916 (2012).   DOI   ScienceOn
3 J. -H. Kim, M. -W. Chon and S. -H. Choa, "Technology of Flexible Transparent Conductive Electrode for Flexible Electronic Devices", J. Microelectron. Packag. Soc., 21(2), 1 (2014).   과학기술학회마을   DOI
4 B. -J. Kim, "Reliability of Metal Electrode for Flexible Electronics", J. Microelectron. Packag. Soc., 20(4), 1 (2013).   과학기술학회마을   DOI
5 A. Chortos and Z. Bao, "Skin-inspired electronic devices", Mater. Today, 17, 321 (2014).   DOI
6 W. M. Choi, J. Song, D. Y. Khang, H. Jiang, Y. Y. Huang and J. A. Rogers, "Biaxially Stretchable "Wavy" Silicon Nanomembranes", Nano Lett., 7, 1655 (2007).   DOI
7 J. Lee, J. Wu, M. Shi, J. Yoon, S. I. Park, M. Li, Z. Liu, Y. Huang and J. A. Rogers, "Stretchable GaAs Photovoltaics with Designs That Enable High Areal Coverage", Adv. Mater., 23, 986 (2011).   DOI   ScienceOn
8 D. -H. Kim, J. Song, W. M. Choi, H. -S. Kim, R. -H. Kim, Z. Liu, Y. Y. Huang, K. -C. Hwang, Y. Zhang and J. A. Rogers, "Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations", Proc. Natl. Acad. Sci. U. S. A., 105, 18675 (2008).   DOI   ScienceOn
9 L. Flandin, A. Hiltner and E. Baer, "Interrelationships between electrical and mechanical properties of a carbon black-filled ethylene-octene elastomer", Polymer, 42, 827 (2001).   DOI
10 P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee and S. H. Ko, "Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network", Adv. Mater., 24, 3326 (2012).   DOI   ScienceOn
11 T. A. Kim, H. S. Kim, S. S. Lee and M. Park, "Single-walled carbon nanotube/silicone rubber composites for compliant electrodes", Carbon, 50, 444 (2012).   DOI
12 N. C. Das, T. K. Chaki and D. Khastgir, "Effect of axial stretching on electrical resistivity of short carbon fibre and carbon black filled conductive rubber composites", Polym. Int., 51, 156 (2002).   DOI   ScienceOn
13 Y. Sun, H. D. Bao, Z. X. Guo and J. Yu, "Modeling of the Electrical Percolation of Mixed Carbon Fillers in Polymer-Based Composites", Macromolecules, 42, 459 (2009).   DOI
14 L. Bokobza, M. Rahmani, C. Belin, J. L. Bruneel and N. E. Bounia, "Blends of carbon blacks and multiwall carbon nanotubes as reinforcing fillers for hydrocarbon rubbers", J. Polym. Sci. b Polym. Phys., 46, 1939 (2008).   DOI   ScienceOn
15 T. W. Lee, Ch. S. Park and H. H. Park, "The effect of ball-milling on the dispersion of carbon nanotubes: the electrical conductivity of carbon nanotubes-incorporated ZnO", J. Ceram. Soc. Jpn., 122 (8), 1 (2014).   DOI
16 M. Wen, X. Sun, L. Su, J. Shen, J. Li and S. Guo, "The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion", Polymer, 53, 1602 (2012).   DOI
17 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim and K. S. Kim, "Large-scale pattern growth of graphene films for stretchable transparent electrodes", Nature, 457, 706 (2009).   DOI   ScienceOn
18 L. Flandin, A. Chang, S. Nazarenko, A. Hiltner and E. Baer, "Effect of strain on the properties of an ethylene-octene elastomer with conductive carbon fillers", J. Appl. Polym. Sci., 76, 894 (2000).   DOI   ScienceOn
19 A. K. Geim and K. S. Novoselov, "The rise of graphene", Nat. Mater., 6, 183 (2007).   DOI   ScienceOn
20 S. P. Rwei, F. H. Ku and K. C. Cheng, "Dispersion of carbon black in a continuous phase: Electrical, rheological, and morphological studies", Colloid Polym. Sci., 280, 1110 (2002).   DOI   ScienceOn
21 K. Yamaguchi, J. J. C. Busfield and A. G. Thomas, "Electrical and mechanical behavior of filled elastomers. I. The effect of strain", J. Polym. Sci. b Polym. Phys., 41, 2079 (2003).   DOI
22 Y. Fukahori and W. Seki, "Stress analysis of elastomeric materials at large extensions using the finite element method", J. Mater. Sci., 29, 2767 (1994).   DOI
23 S. Rosset and H. R. Shea, "Flexible and stretchable electrodes for dielectric elastomer actuators", Appl. Phys. A, 110, 281 (2013).   DOI