• 제목/요약/키워드: Nanostructured Materials

검색결과 366건 처리시간 0.029초

ZnO buffer 박막층 위에 성장된 3차원 ZnO 나노구조체의 합성 (Synthesis of 3D nanostructured flower-like ZnO architecture on ZnO thin-film by hydrothermal process)

  • 유범근;박용욱;강종윤;김진상;최두진;윤석진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.248-248
    • /
    • 2009
  • Recently, the control of size, morphology and dimensionality in inorganic materials has been rapidly developed into a promising field in materials chemistry. 3D nanostructured flower-like ZnO architecture with different size and shapes have been simply synthesized via a hydrothermal process, using zinc acetate and ammonium hydroxide as reactants.[1] In this study, the Zno thin-films were deposited by RF magnetron sputtering in other to get high adhesion and uniformity of 3D nanostructured flower-like ZnO architecture on a $SiO_2$ substrate. The XRD patterns identified that the obtained the nanocrystallized ZnO architecture exhibited a wurtzite structure. SEM images illustrated that the flower-like ZnO bundles consisted of flower-like or chestnut bur, which were characterized by polycrystalline and [0001] preferential orientation.

  • PDF

수열합성법에 의한 3차원 ZnO 나노구조체 합성 (Synthesis of 3D Nanostructured Flower-like ZnO Architecture on ZnO Thin-film by Hydrothermal Process)

  • 유범근;박용욱;강종윤;김진상;윤석진
    • 한국전기전자재료학회논문지
    • /
    • 제22권10호
    • /
    • pp.884-889
    • /
    • 2009
  • Recently, the control of size, morphology and dimensionality in inorganic materials has been rapidly developed into a promising field in materials chemistry. 3D nanostructured flower-like ZnO architecture with different size and shapes have been simply synthesized by hydrothermal process, using zinc acetate and ammonium hydroxide as reactants. In this study, the ZnO thin-films were deposited by RF magnetron sputtering in other to get high adhesion and uniformity of 3D nanostructured flower-like ZnO architecture on a $SiO_2$ substrate. The XRD patterns identified that the obtained the nanocrystallized ZnO architecture exhibited a wurtzite structure. SEM images illustrated that the flower-like ZnO bundles consisted of flower-like or chestnut bur, which were characterized by polycrystalline and (002) preferential orientation.

The Use of Pistachio Pollen for the Production of Nanostructured Porous Nickel Oxide

  • Atalay, F.E.;Yigit, E.;Biber, Z.S.;Kaya, H.
    • Nano
    • /
    • 제13권12호
    • /
    • pp.1850143.1-1850143.9
    • /
    • 2018
  • Natural biotemplates - such as bacteria, fungi and viruses - are used in nanostructured metal oxide production. The pollen can be found abundantly in nature, and their microcapsules can be easily isolated from the pollen by chemical treatments. To date, pollen microcapsules are mostly used as drug carriers and catalytic agent templates. In the present study, nanoporous-structured nickel oxide is produced using Pistachio pollen microcapsules. The raw pollen, chemically treated pollen and metal-coated pollen were characterized using scanning electron microscopy, Brunauer-Emmett-Teller (BET) surface area analysis, thermogravimetric analysis (TGA), differential thermal analysis (DTA) and X-ray diffraction (XRD) techniques. The natural Pistachio pollen which were procured from Gaziantep, Turkey, are spherical, with a diameter of approximately $23{\mu}m$. The maximum surface area obtained for nickel oxide-coated microcapsules is $228.82m^2/g$. This result shows that Pistachio pollen are an excellent candidate for the production of porous nanostructured materials for supercapacitor electrodes.

분말 ECAP 공정 시 치밀화의 유한요소해석 (Finite Element Analysis of Densification Behavior during Equal Channel Angular Pressing Process of Powders)

  • 윤승채;팜쾅;천병선;이홍로;김형섭
    • 한국분말재료학회지
    • /
    • 제13권6호
    • /
    • pp.415-420
    • /
    • 2006
  • Nanostructured metallic materials are synthesized by bottom-up processing which starts with powders for assembling bulk materials or top-down processing starting with a bulk solid. A representative bottom-up and top-down paths for bulk nanostructured/ultrafine grained metallic materials are powder consolidation and severe plastic deformation (SPD) methods, respectively. In this study, the bottom-up powder and top-down SPD approaches were combined in order to achieve both full density and grain refinement without grain growth, which were considered as a bottle neck of the bottom-up method using conventional powder metallurgy of compaction and sintering. For the powder consolidation, equal channel angular pressing (ECAP), one of the most promising method in SPD, was used. The ECAP processing associated with stress developments was investigated. ECAP for powder consolidation were numerically analyzed using the finite element method (FEM) in conjunction with pressure and shear stress.

펄스전류활성 연소합성에 의한 나노구조 (Ti,Mo)Si2 제조 및 기계적 특성 (Mechanical Properties and Fabrication of Nanostructured (Ti,Mo)Si2 by Pulsed Current Activated Combustion)

  • 고인용;박나라;오세훈;손인진
    • 대한금속재료학회지
    • /
    • 제49권8호
    • /
    • pp.608-613
    • /
    • 2011
  • Nanopowders of Mo, Ti and Si were made by high-energy ball milling. A dense nanostructured $(Ti,Mo)Si_2$ compound was sintered by the pulsed current activated combustion method within two minutes from mechanically activated powder of Mo, Ti and Si. A highly dense $(Ti,Mo)Si_2$ compound was produced under simultaneous application of 80 MPa pressure and a pulsed current. The mechanical properties and micorostructure were investigated. The hardness and fracture toughness of the $(Ti,Mo)Si_2$ were $1030kg/mm^2$ and $4.9MPa{\cdot}m^{1/2}$, respectively. The mechanical properties were higher than monolithic $TiSi_2$.