Browse > Article
http://dx.doi.org/10.4313/JKEM.2009.22.10.884

Synthesis of 3D Nanostructured Flower-like ZnO Architecture on ZnO Thin-film by Hydrothermal Process  

Yoo, Beom-Keun (한국과학기술연구원 박막연구센터)
Park, Yong-Wook (남서울대학교 전자공학과)
Kang, Chong-Yoon (한국과학기술연구원 박막연구센터)
Kim, Jin-Sang (한국과학기술연구원 박막연구센터)
Yoon, Seok-Jin (한국과학기술연구원 박막연구센터)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.22, no.10, 2009 , pp. 884-889 More about this Journal
Abstract
Recently, the control of size, morphology and dimensionality in inorganic materials has been rapidly developed into a promising field in materials chemistry. 3D nanostructured flower-like ZnO architecture with different size and shapes have been simply synthesized by hydrothermal process, using zinc acetate and ammonium hydroxide as reactants. In this study, the ZnO thin-films were deposited by RF magnetron sputtering in other to get high adhesion and uniformity of 3D nanostructured flower-like ZnO architecture on a $SiO_2$ substrate. The XRD patterns identified that the obtained the nanocrystallized ZnO architecture exhibited a wurtzite structure. SEM images illustrated that the flower-like ZnO bundles consisted of flower-like or chestnut bur, which were characterized by polycrystalline and (002) preferential orientation.
Keywords
3D flower-like; ZnO nanostructure; Hydrothermal process; ZnO thin-films;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, and W. C. Harsch, “Electrical properties of bulk ZnO”, Solid State Commun., Vol. 105, p. 399, 1998.   DOI   ScienceOn
2 Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang, and D. P. Yu, “Efficient field emission from ZnO nanoneedle arrays”, Appl. Phys. Lett., Vol. 83, p. 144, 2003.   DOI   ScienceOn
3 M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers”, Science, Vol. 292, p. 1897, 2001.   DOI   ScienceOn
4 R. Konenkamp, Robert C. Word, and C. Schlegel, “Vertical nanowire light-emitting diode”, Appl. Phys. Lett., Vol. 85, p. 6004, 2004.   DOI   ScienceOn
5 Q. Wan, Q. H. Li, Y. J. Chen, and T. H. Wang, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors”, Appl. Phys. Lett., Vol. 84, p.3654, 2004.   DOI   ScienceOn
6 J. B. Baxter and E. S. Aydil, “Nanowirebased dye-sensitized solar cells”, Appl. Phys. Lett., Vol. 86, p. 053114, 2005.   DOI   ScienceOn
7 H. Jeon, V. P. Verma, K. Noh, D. H. Kim, W. Choi, and M. Jeon, “Fabrication and characteristics of zinc oxide- and gallium doped zinc oxide thin film transistor using radio frequency magnetron sputtering at room temperature”, J. Kor. Vac. Soc., Vol. 16, p. 359, 2007.   과학기술학회마을   DOI   ScienceOn
8 S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, H. W. Shim, E. K. Suh, and C. J. Lee, “Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires”, Chemical Physics Letter, Vol. 363, p. 134, 2002.   DOI   ScienceOn
9 J. J. Wu and S. C. Liu, “Catalyst-free growth and characterization of ZnO nano rods”, J. Phys. Chem. B, Vol. 106, p. 9546, 2002.   DOI   ScienceOn
10 R. F. Service, “Materials science: Will UV lasers beat the blues”, Science, Vol. 276, p. 895, 1997.   DOI   ScienceOn
11 T. Minami, S. Suzuki, and T. Miyata, “Transparent conducting impurity-co-doped Zn O:Al thin films prepared by magnetron sputt ering”, Thin Solid Films, Vol. 398, p. 53, 2001.   DOI   ScienceOn
12 H. Kind, H. Yan, M. Law, B. Messer, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches”, Advanced Materials, Vol. 14, p. 158, 2002.   DOI   ScienceOn
13 C. Liu, J. A. Zapien, Y. Yao, X. Meng, C. S. Lee, S. Fan, Y. Lifshitz, and S. T. Lee, “High-density, ordered ultraviolet lightemitting ZnO nanowire arrays”, Advanced Materials, Vol. 15, p. 838, 2003.   DOI   ScienceOn
14 X. Y. Kong and Z. L. Wang, “Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts”, NanoLetter, Vol. 3, p. 1625, 2003.   DOI   ScienceOn
15 H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, and M. Meyyappan, “Growth of epitaxial nanowires at the junctions of nanowalls”, Science, Vol. 300, p. 1249, 2003.   DOI   ScienceOn
16 J. Q. Hu and Y. Bando, “Growth and optical properties of single-crystal tubular ZnO whiskers”, Applied Physics Letter, Vol. 82, p. 1401, 2003.   DOI   ScienceOn
17 M. Guo, P. Diao, and S. H. M. Cai, “Hydrothermal growth of perpendicularly orien ted ZnO nanorod array film and its photo electrochemical properties”, Applied Surface Science, Vol. 249, p. 71, 2005.   DOI   ScienceOn
18 L. Vayssieres, K. Keis, A. Hagfeldt, and S. E. Lindquist, “Three-dimensional array of highly oriented crystalline ZnO microtubes”, Chemistry of Materials, Vol. 13, p. 4395, 2001.   DOI   ScienceOn
19 J. Y. Lao, J. Y. Huang, D. Z. Wang, and Z. F. Ren, “ZnO nanobridges and nanonails”, NanoLetter, Vol. 3, p. 235, 2003.   DOI   ScienceOn
20 C. Klingshirn, “The luminescence of ZnO under high one- and two-quantum excitation”, Physica Status Solid B, Vol. 71, p. 547, 1975.   DOI   ScienceOn