• Title/Summary/Keyword: Nanoscience

Search Result 240, Processing Time 0.022 seconds

Laser Fabrication of Graphene-based Materials and Their Application in Electronic Devices (레이저 유도에 의한 그래핀 합성 및 전기/전자 소자 제조 기술)

  • Jeon, Sangheon;Park, Rowoon;Jeong, Jeonghwa;Hong, Suck Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • Here, we introduce a laser-induced graphene synthesis technology and its applications for the electric/electronic device manufacturing process. Recently, the micro/nanopatterning technique of graphene has received great attention for the utilization of these new graphene structures, which shows progress developments at present with a variety of uses in electronic devices. Some examples of practical applications suggested a great potential for the tunable graphene synthetic manners through the control of the laser set-up, such as a selection of the wavelength, power adjustment, and optical techniques. This emerging technology has expandability to electric/electronic devices combined together with existed micro-packaging technology and can be integrated with the new processing steps to be applied for the operation in the fields of biosensors, supercapacitors, electrochemical sensors, etc. We believe that the laser-induced graphene technology introduced in this paper can be easily applied to portable small electronic devices and wearable electronics in the near future.

Enhanced field emission and luminescent properties of straightened carbon nanotubes for applications in field emission display

  • Kim, Do-Hyung;Jang, Hoon-Sik;Lee, Sung-Youp;Lee, Hyeong-Rag;Kim, Chang-Duk;Cho, Dong-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.207-212
    • /
    • 2003
  • The field emission and luminescent properties of carbon nanotubes (CNTs) that were straightened out by argon ion irradiation were investigated. Argon ion irradiation permanently straightened out both as-grown and screen-printed CNTs in the presence of a strong electric field. The straightening process enhanced the emission properties of CNT films by showing a decrease in turn-on field, an increase in total emission current, and a stable emission. Furthermore, the number of emission sites was confirmed to increase by observing the luminescent properties of CNT films after the straightening. The mechanism involved in the straightening of the CNTs is proposed and the enhancement in field emission is discussed in detail.

  • PDF

Synthesis and Exploitation in Solar Cells of Hydrothermally Grown ZnO Nanorods Covered by ZnS Quantum Dots

  • Mehrabian, Masood;Afarideh, Hossein;Mirabbaszadeh, Kavoos;Lianshan, Li;Zhiyong, Tang
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.307-316
    • /
    • 2014
  • Improved power conversion efficiency of hybrid solar cells with ITO/ZnO seed layer/ZnO NRs/ZnS QDs/P3HT/PCBM/Ag structure was obtained by optimizing the growth period of ZnO nanorods (NRs). ZnO NRs were grown using a hydrothermal method on ZnO seed layers, while ZnS quantum dots (QDs) (average thickness about 24 nm) were fabricated on the ZnO NRs by the successive ionic layer adsorption and reaction (SILAR) technique. Morphology, crystalline structure and optical absorption of layers were analyzed by a scanning electron microscope (SEM), X-ray diffraction (XRD) and UV-Visible absorption spectra, respectively. The XRD results implied that ZnS QDs were in the cubic phase (sphalerite). Other experimental results showed that the maximum power conversion efficiency of 4.09% was obtained for a device based on ZnO NR10 under an illumination of one Sun (AM 1.5G, $100mW/cm^2$).

Pre-treatment of textile wastewaters containing Chrysophenine using hybrid membranes

  • lehi, Arash Yunessnia;Mousavirad, Seyed Jalaleddin;Akbari, Ahmad
    • Membrane and Water Treatment
    • /
    • v.8 no.1
    • /
    • pp.89-112
    • /
    • 2017
  • Dyeing wastewaters are the most problematic wastewater in textile industries and also, growing amounts of waste fibers in carpet industries have concerned environmental specialists. Among different treatment methods, membrane filtration processes as energy-efficient and compatible way, were utilized for several individual problems. In this research, novel hybrid membranes were prepared by waste fibers of mechanical carpets as useful resource of membrane matrix and industrial graphite powder as filler to eliminate Chrysophenine GX from dyeing wastewater. These membranes were expected to be utilized for first stage of hybrid membrane filtration process including (adsorption-ultrafiltration) and nanofiltration in Kashan Textile Company. For scaling of membrane filtration process, fouling mechanism of these membranes were recognized and explained by the use of genetic algorithm, as well. The graphite increased rejection and diminished permeate flux at low concentration but in high concentration, the performance was significantly worsened. Among all hybrid membranes, 18% wt. waste fibers-1% wt. graphite membrane had the best performance and minimum fouling. The maximum pore size of this optimum membrane was ranged from 16.10 to 18.72 nm.