• Title/Summary/Keyword: Nanoparticles Shape

Search Result 209, Processing Time 0.026 seconds

Synthesis of complex nanoparticles using bioceramic silica (바이오 세라믹 실리카를 이용한 복합 나노입자 구조체의 합성)

  • Yoon, Seokyoung;Lee, Jung Heon
    • Ceramist
    • /
    • v.21 no.3
    • /
    • pp.283-292
    • /
    • 2018
  • Here, we introduce various type of inorganic nanostructure synthesized with functional nanoparticles and silica. From two decades ago, functional inorganic nanoparticles have been synthesized and highlighted, now we moved to next level of wet-chemical synthesis. By integrating functional nanoparticles with silica, we were able to synthesize multi-functional nanostructure, which expand the applications of nanoparticles to catalyst, drug carrier, sensors. In this context, silica has been spotlighted due to its versatility. Silica has highly biocompatible, relatively transparent and stable under harsh conditions. Thus it can be used as good supporter to synthesize complex multi-functional nanostructure when mixed with other functional nanoparticles. A various shape of complex nanostructures have been synthesized including core-shell type, yolk-shell type and janus type etc. In this paper, we have described the purposes of synthesizing silica noncomplex and various case studies for biomedical applications and self-assembly.

The Synthetic Melanin Nanoparticles Having An Excellent Binding Capacity of Heavy Metal Ions

  • Kim, Da Jeong;Ju, Kuk-Youn;Lee, Jin-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3788-3792
    • /
    • 2012
  • Spherical-shape melanin nanoparticles with good water-dispersibility were successfully synthesized by a simple oxidation polymerization of 3,4-dihydroxy-phenylalanin (DOPA) with $KMnO_4$. Similar features to those known from natural and synthetic melanin polymers were observed from prepared melanin nanoparticles by FT-IR, UV-Vis., and ESR spectroscopic methods. Their binding ability with several heavy metal ions from aqueous solution was quantitatively investigated, and the maximum binding capacities with melanin nanoparticles to lead, copper, and cadmium ions were obtained as 2.45, 2.17 and 1.88 mmol/g, respectively, which are much larger values than those reported from natural and synthetic melanin polymers. The large binding capacity and fast binding rate of melanin nanoparticles to metal ions can make them an excellent candidate for the remediation of contaminated water.

Mixture rule for studding the environmental pollution reduction in concrete structures containing nanoparticles

  • Tabatabaei, Javad;Nourbakhsh, Seyed Hesam;Siahkar, Mahdi
    • Coupled systems mechanics
    • /
    • v.9 no.3
    • /
    • pp.281-287
    • /
    • 2020
  • Nanotechnology is an upcoming technology that can provide solution for combating pollution by controlling shape and size of materials at the nanoscale. This review provides comprehensive information regarding the role of nanotechnology in pollution control at concrete structures. Titanium dioxide (TiO2) nanoparticles are a good item for concrete structures for diminishing the air polluting affect by gasses of exhaust. In this article, the mixture rule is presented for the effect of nanoparticles in environmental pollution reduction in concrete structures. The compressive strength, elastic modulus and reduction of steel bars in the concrete structures are studied. The Results show that TiO2 nanoparticles have significant effect on the reduction of environmental pollution and increase of stiffness in the concrete structures. In addition, the nanoparticles can reduce the use of steel bars in the concrete structure.

Membrane Penetration and Translocation of Nanoparticles

  • Sin, Dong-Ju;Hyeon, Jeong-In;Sim, Eun-Ji
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.139-151
    • /
    • 2013
  • Understanding interactions between nanoparticles and lipid bilayer membranes is of great importance due to the potential applications in bio-nanotechnology such as drug deliveries, carrying genes, and utilization of integral membrane proteins. To investigate the dynamics of nanoparticle penetration and translocation into membranes, we performed dissipative particle dynamics simulations which use simple and intuitive coarse-grained models yet effectively describe hydrodynamic interactions in cell environment. We discuss the influence of the shape of nanoparticles as well as the properties of membranes including large membrane-embedded proteins that are found to significantly affect orientation of nanoparticles within membranes and, in turn, the minimum force required to translocate nanoparticles.

  • PDF

Resazurin Redox Reaction Mechanism Using Silver Nanoparticles Synthesized with Monosaccharides and Disaccharides (단당류와 이당류를 환원제로 합성한 은 나노입자의 Resazurin 산화환원반응 메커니즘)

  • Park, Young Joo;Chang, Ji Woong
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.299-304
    • /
    • 2020
  • Nanoparticles play an important role as a catalyst in many chemical syntheses. Colloidal nanoparticles were usually synthesized with reducing, capping, and shape directing agents which induce surface poisoning of catalysts. A new green synthesis for silver nanoparticles was developed by utilizing less additives which could be a hazardous waste. A crystallization technique was employed to reduce the amount of reducing and capping agents during synthesis resulting in less surface poisoning of the nanoparticle. The synthesized Ag nanoparticles using monosaccharides and disaccharides as reducing agents could be used as a catalyst for the redox reaction of resazurin and the mechanism of the reaction using Ag nanoparticles was studied.

The Effect of Acetic Acid in Synthesizing PbSe Quantum Dots by Hot Solution Chemical Process (고온 열분해 반응법을 이용한 PbSe 나노입자의 Acetic Acid 첨가에 대한 영향)

  • Baek, In-Chan;Seok, Sang-Il;Chung, Yong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.2 s.297
    • /
    • pp.89-92
    • /
    • 2007
  • PbSe, with a band gap in the mid-infrared and a samll effective mass, is an interesting material for optical and electrical applications in infrared region. Various colloidal synthetic routes for synthesizing PbSe quantum dot nanoparticles have been developed in the last couple of years. In this work, stable colloidal solutions containing crystalline PbSe particles in the order of 5-15 nm were synthesized using different amount of acetic acid in high boiling coordinating solvents. The size and shape of PbSe nanoparticles was greatly influenced by coexistence of acetic acid in synthetic medium. It was observed by TEM that the shape of PbSe nanoparticles with different amount of acetic acid was changed from spherical to cube or star types.

Characterization of TiO2 Synthesized in Acidic Conditions at Low Temperature by Sol-gel Method

  • Nguyen, Thanh Binh;Hwang, Moon-Jin;Lee, Seon-Sam;Choe, Dong-Eon;Ryu, Kwang-Sun
    • Journal of Powder Materials
    • /
    • v.17 no.5
    • /
    • pp.409-414
    • /
    • 2010
  • Titanium dioxide ($TiO_2$), which is one of the most basic materials in our daily life, plays a key role for environment purification. We synthesized $TiO_2$ nanoparticles by the hydrolysis reactions of titanium tetraisopropoxide using $HNO_3$ as a peptizing agent or $CH_3COOH$ as a chelating agent in the sol-gel method. The powder consisted of a rod shape or a spherical shape according to the concentration and kind of acid. The physical properties of $TiO_2$ nanoparticles were investigated with X-ray diffraction, SEM, BET analysis, and UV-Vis spectrophotometer.

Synthesis and Physicochemical Characterization of Biodegradable PLGA-based Magnetic Nanoparticles Containing Amoxicilin

  • Alimohammadi, Somayeh;Salehi, Roya;Amini, Niloofar;Davaran, Soodabeh
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3225-3232
    • /
    • 2012
  • The purposes of this research were to synthesize amoxicillin-carrying magnetic nanoparticles. Magnetic nanoparticles were prepared by a chemical precipitation of ferric and ferrous chloride salts in the presence of a strong basic solution. PLGA and PLGA-PEG copolymers were prepared by ring opening polymerization of lactide (LA) and glycolide (GA) (mole ratio of LA: GA 3:1) with or without polyethylene glycol (PEG). Amoxicillin loaded magnetic PLGA and PLGA-PEG nanoparticles were prepared by an emulsion-evaporation process (o/w). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) photomicrographs showed that the magnetic nanoparticles have the mean diameter within the range of 65-260 nm also they were almost spherical in shape. Magnetic nanoparticles prepared with PLGA showed more efficient entrapment (90%) as compared with PLGA-PEG (48-52%) nanoparticles. In-vitro release of amoxicillin from magnetic PLGA nanoparticles showed that 78% of drug was released over 24 hours. The amount of amoxicillin released from PLGA-PEG s was higher than PLGA.

Preparation of hybrid Fe3O4 nanoparticles for biomedical applications (생의학적 응용을 위한 Fe3O4 복합 나노입자의 제조)

  • Bae, Sung-Su;Nguyen, The Dung;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.36
    • /
    • pp.77-81
    • /
    • 2016
  • Superparamagnetic $Fe_3O_4$ nanoparticles with particle size from 10 to 20 nm were synthesized by coprecipitation method. Subsequently, the $Fe_3O_4$ nanoparticles were used to fabricate $Fe_3O_4/SiO_2$ core-shell nanoparticles by sol-gel method. The $Fe_3O_4/SiO_2$ nanoparticles synthesized by sol-gel method exhibit the high uniformities of particle size and shape. We also investigated the heating characteristics of $Fe_3O_4$ and $Fe_3O_4/SiO_2$ nanoparticles for biomedical applications. The $Fe_3O_4$ nanoparticles show the faster temperature increase and the higher specific loss power(SLP) value than the $Fe_3O_4/SiO_2$ nanoparticles.

  • PDF