• 제목/요약/키워드: Nanoparticle manipulation

검색결과 7건 처리시간 0.026초

Nanoparticle Manipulation Using Atomic Force Microscope and X-Y Stage

  • Liu, T.S.;Wen, B.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1542-1546
    • /
    • 2003
  • Nanotechnology is an important challenge, for which nanoparticle manipulation plays an important role in the assembly of nano elements. In this study, the dynamic equation of system plant is established by van der Waals force, friction, capillary forces etc. To push nanoparticles, strain gauges are used as sensors to actuate an X-Y stage in an atomic force microscopy system. A strategy of pushing nanoparticles is developed based on sliding mode control. Moreover, afuzzy controller is responsible for compensating tip-particle contact loss according to feedback signals of a laser-detector system. According to position control result, experimental results of gold nanoparticle manipulation are presented.

  • PDF

Fabrication and Manipulation of Gold 1D Chain Assemblies Using Magnetically Controllable Gold Nanoparticles

  • Kim, Lily Nari;Kim, Eun-Geun;Kim, Junhoi;Choi, Sung-Eun;Park, Wook;Kwon, Sunghoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3735-3739
    • /
    • 2012
  • We have developed magnetically controllable gold nanoparticles by synthesizing superparamagnetic $Fe_3O_4$ core/gold shell nanoparticles. The core/shell particles have the capability of forming gold 1D chains in the presence of an external magnetic field. Here we demonstrate dynamic and reversible self-assembly of the gold 1D chain structures in an aqueous solution without any templates or physical or chemical attachment. The spatial configuration of gold chains can be arbitrarily manipulated by controlling the direction of a magnetic field. This technique can provide arbitrary manipulation of gold 1D chains for fabrication purpose. To demonstrate this capability, we present a technique for immobilization of the gold particle chains on a glass substrate.

표면특성이 제어된 기능성 나노 입자의 전자 및 의공학적 응용

  • 박영준;이준영;김중현
    • 한국결정학회:학술대회논문집
    • /
    • 한국결정학회 2002년도 정기총회 및 추계학술연구발표회
    • /
    • pp.54-55
    • /
    • 2002
  • The fabrication, characterization and manipulation of nanoparticle system brings together physics, chemistry, materials science and biology in an unprecedented way. Phenomena occurring in such systems are fundamental to the workings of electronic devices, but also to living organisms. The ability to fabricate the surface of nanoparticles Is essential in the further development of functional devices that incorporate nanoscale features. Even more essential is the ability to introduce a wide range of chemical and materials flexibility into these structures to build up more complex nanostructures that can ultimately rival biological nanosystems. In this respect, polymers are potentially ideal nanoscale building blocks because of their length scale, well-defined architecture, controlled synthesis, ease of processing and wide range of chemical functionality that can be incorporated. In this presentation, we will look at a number of promising polymer-based nanoparticle fabrication strategies that have been developed recently, with an emphasis on those techniques that incorporate nanostructured polymeric particles into electronic devices or biomedical applications. And functional nanoparticles deliberately designed using several powerful process methods and their application will be discussed. Nanostructured nanoparticles, what we called, implies dispersed colloids with the size ranged from several nanometers to hundreds of nanometer. They have extremely large surface area, thus it is very important to control the morphology or surface functionality fitted for adequate objectives and properties. Their properties should be controlled for various kind of bio-related technologies, such as immunomagnetic cell separation, drug delivery systems, labeling and identification of lymphocyte populations, extracorporeal and hemoperfusion systems, etc. Well-defined polymeric nanoparticles can be considered as smart bomb or MEMS.

  • PDF

Nanotechnology in Biodevices

  • Choi, Jeong-Woo;Oh, Byung-Keun;Kim, Young-Kee;Min, Jun-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.5-14
    • /
    • 2007
  • Nanotechnology is the creation and utilization of materials, devices, and systems through the control of matter on the nanometer. The technology has been applied to biodevices such as bioelectronics and biochips to improve their performances. Nanoparticles, such as gold (Au) nanoparticles, are the most widely used of the various other nanotechnologies for manipulation at the nanoscale as well as nanobiosensors. The immobilization of biomolecules is playing an increasingly important role in the development of biodevices with high performance. Nanopatteming technology, which is able to increase the density of chip arrays, offers several advantages, including cost lowering, simultaneous multicomponent detection, and the efficiency increase of biochemical reactions. A microftuidic system incorporated with control of nanoliter of fluids is also one of the main applications of nanotechnologies. This can be widely utilized in the various fields because it can reduce detection time due to tiny amounts of fluids, increase signal-to-noise ratio by nanoparticles in channel, and detect multi-targets simultaneously in one chamber. This article reviews nanotechnologies such as the application of nanoparticles for the detection of biomolecules, the immobilization of biomolecules at nanoscale, nanopatterning technologies, and the microfluidic system for molecular diagnosis.

산화아연 나노핵의 조작을 통한 산화아연 나노로드의 제어 (Artificial Control of ZnO Nanorods via Manipulation of ZnO Nanoparticle Seeds)

  • 신경식;이삼동;김상우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.399-399
    • /
    • 2008
  • Synthesis and characterization of ZnO structure such as nanowires, nanorods, nanotube, nanowall, etc. have been studied to multifunctional application such as optical, nanoscale electronic and chemical devices because it has a room-temperature wide band gap of 3.37eV, large exiton binding energy(60meV) and various properties. Various synthesis methods including chemical vapor deposition (CVD), physical vapor deposition, electrochemical deposition, micro-emulsion, and hydrothermal approach have been reported to fabricate various kinds of ZnO nanostructures. But some of these synthesis methods are expensive and difficult of mass production. Wet chemical method has several advantage such as simple process, mass production, low temperature process, and low cost. In the present work, ZnO nanorods are deposited on ITO/glass substrate by simple wet chemical method. The process is perfomed by two steps. One-step is deposition of ZnO seeds and two-step is growth of ZnO nanorods on substrates. In order to form ZnO seeds on substrates, mixture solution of Zn acetate and Methanol was prepared.(one-step) Seed layers were deposited for control of morpholgy of ZnO seed layers by spin coating process because ZnO seeds is deposited uniformly by centrifugal force of spin coating. The seed-deposited samples were pre-annealed for 30min at $180^{\circ}C$ to enhance adhesion and crystallinnity of ZnO seed layer on substrate. Vertically well-aligned ZnO nanorods were grown by the "dipping-and-holding" process of the substrates into the mixture solution consisting of the mixture solution of DI water, Zinc nitrate and hexamethylenetetramine for 4 hours at $90^{\circ}C$.(two-step) It was found that density and morphology of ZnO nanorods were controlled by manipulation of ZnO seeds through rpm of spin coating. The morphology, crystallinity, optical properties of the grown ZnO nanostructures were carried out by field-emission scanning electron microscopy, high-resolution electron microscopy, photoluminescence, respectively. We are convinced that this method is complementing problems of main techniques of existing reports.

  • PDF