• Title/Summary/Keyword: Nanometer

Search Result 597, Processing Time 0.024 seconds

Effect of Ammonium Persulfate Concentration on Characteristics of Cellulose Nanocrystals from Oil Palm Frond

  • ZAINI, Lukmanul Hakim;FEBRIANTO, Fauzi;WISTARA, I Nyoman Jaya;N, Marwanto;MAULANA, Muhammad Iqbal;LEE, Seung Hwan;KIM, Nam Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.597-606
    • /
    • 2019
  • Cellulose nanocrystals (CNCs) were successfully isolated from oil palm fronds (OPFs) using different concentrations of ammonium persulfate (APS), and their characteristics were analyzed by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis, and thermogravimetric analysis (TGA). APS oxidation effectively isolated CNCs with rod-like morphology in nanometer scale. The dimensions of the CNCs decreased with increasing APS concentration. FTIR and XRD analyses revealed that all the CNCs showed crystals in the form of cellulose I without crystal transformation occurring during APS treatment. The relative crystallinity of the CNCs increased with increasing APS concentration, whereas their thermal stability decreased. An APS concentration of 2 M was found to be optimal for isolating the CNCs.

Digital X-Ray Technology and Applications (디지털 엑스선 기술과 응용)

  • Jeong, J.W.;Kang, J.T.;Kim, J.W.;Park, S.;Lee, M.L.;Song, Y.H.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.5
    • /
    • pp.1-13
    • /
    • 2019
  • In modern times, X-ray imaging has become a necessary tool for early diagnosis, quality control, nondestructive testing, and security screening. X-ray imaging equipment generally comprises an X-ray generator and an image sensor. Most commercially available X-ray generators employ filament-thermionic electron-based X-ray tubes, thus demonstrating typical analog behavior, such as slow response and large stray X-rays. Furthermore, digital X-ray sources, which have been studied extensively using field electron emitters manufactured from nanometer-scale materials, provide fast and accurately controlled ultra-shot X-rays. This could usher in a new era of X-ray imaging in medical diagnosis and nondestructive inspections. Specifically, digital X-ray sources, with reduced X-ray dose, can significantly improve the temporal and spatial resolution of fluoroscopy and computed tomography. Recently, digital X-ray tube technologies based on carbon nanotubes, developed by Electronics and Telecommunications Research Institute, have been transferred to several companies and commercialized for dental imaging for the first time.

Optical Characterization of Light-Emitting Diodes Grown on the Cylinder Shape 300 nm Diameter Patterned Sapphire Substrate (300 nm Diameter Cylinder-Shape 나노패턴 기판을 이용한 LEDs의 광학적 특성)

  • Kim, Sang Mook;Kim, Yoon Seok
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.59-64
    • /
    • 2019
  • This study investigates the optical characteristics of InGaN multiple quantum wells(MQWs) light emitting diodes(LEDs) on planar sapphire substrates(PSSs), nano-sized PSS(NPSS) and micro-sized PSS(MPSS). We obtain the results as the patterning size of the sapphire substrates approach the nanometer scale: The light from the back side of the device increases and the total light extraction becomes larger than the MPSS- and planar-LEDs. The experiment is conducted by Monte Carlo ray-tracing, which is regarded as one of the most suitable ways to simulate light propagation in LEDs. The results show fine consistency between simulation and measurement of the samples with different sized patterned substrates. Notably, light from the back side becomes larger in the NPSS LEDs. We strongly propose that the increase in the light intensity of NPSS LEDs is due to an abnormal optical distribution, which indicates an increase of extraction probability through NPSS.

High resolution size characterization of particulate contaminants for radioactive metal waste treatment

  • Lee, Min-Ho;Yang, Wonseok;Chae, Nakkyu;Choi, Sungyeol
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2277-2288
    • /
    • 2021
  • To regulate the safety protocols in nuclear facilities, radioactive aerosols have been extensively researched to understand their health impacts. However, most measured particle-size distributions remain at low resolutions, with the particle sizes ranging from nanometer to micrometer. This study combines the high-resolution detection of 500 size classes, ranging from 6 nm to 10 ㎛, for aerodynamic diameter distributions, with a regional lung deposition calculation. We applied the new approach to characterize particle-size distributions of aerosols generated during the plasma arc cutting of simulated non-radioactive steel alloy wastes. The high-resolution measured data were used to calculate the deposition ratios of the aerosols in different lung regions. The deposition ratios in the alveolar sacs contained the dominant particle sizes ranging from 0.01 to 0.1 ㎛. We determined the distribution of various metals using different vapor pressures of the alloying components and analyzed the uncertainties of lung deposition calculations using the low-resolution aerodynamic diameter data simultaneously. In high-resolution data, the changes in aerosols that can penetrate the blood system were better captured, correcting their potential risks by a maximum of 42%. The combined calculations can aid the enhancement of high-resolution measuring equipment to effectively manage radiation safety in nuclear facilities.

Evaluation of Anti-tarnishing and Corrosion Resistance of Cu-Xwt%Sn Alloy before and After Selective SnO2 Oxide Film according to Potentiostatic Electrolysis Treatment (Cu-Xwt%Sn 합금 위에 선택적 산화막 SnO2 형성 유·무에 따른 내변색 및 내부식특성 평가)

  • Choi, Ji Woong;Kim, Hye Sung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.6
    • /
    • pp.265-271
    • /
    • 2021
  • In this study, anti-tarnishing and corrosion characteristics of a single 𝛽1' and Bangjja Yugi alloy in the Cl- ion environment before and after potentiostatic electrolysis treatment were compared. Stable and uniform SnO2 oxide film with several nanometer thickness is formed after potentiostatic electrolysis treatment. In the case of Bangjja Yugi prior to potentiostatic electrolysis (PE) treatment for exposure in Cl- environment, tarnishing occurs rapidly within 0.5hr, whereas PE treated Bangjja Yugi indicates stable surface without tarnishing up to 3hr. Especially, it is noticeable that anti-tarnishing and corrosion characteristic of PE treated single 𝛽1', which were significantly improved by 3 times and 15 times, respectively, compared to conventional Bangja Yugi.

Water transport through hydrophobic micro/nanoporous filtration membranes on different scales

  • Mian, Wang;Yongbin, Zhang
    • Membrane and Water Treatment
    • /
    • v.13 no.6
    • /
    • pp.313-320
    • /
    • 2022
  • Theoretical calculation results are presented for the enhancement of the water mass flow rate through the hydrophobic micro/nano pores in the membrane respectively on the micrometer and nanometer scales. The water-pore wall interfacial slippage is considered. When the pore diameter is critically low (less than 1.82nm), the water flow in the nanopore is non-continuum and described by the nanoscale flow equation; Otherwise, the water flow is essentially multiscale consisting of both the adsorbed boundary layer flow and the intermediate continuum water flow, and it is described by the multiscale flow equation. For no wall slippage, the calculated water flow rate through the pore is very close to the classical hydrodynamic theory calculation if the pore diameter (d) is larger than 1.0nm, however it is considerably smaller than the conventional calculation if d is less than 1.0nm because of the non-continuum effect of the water film. When the driving power loss on the pore is larger than the critical value, the wall slippage occurs, and it results in the different scales of the enhancement of the water flow rate through the pore which are strongly dependent on both the pore diameter and the driving power loss on the pore. Both the pressure drop and the critical power loss on the pore for starting the wall slippage are also strongly dependent on the pore diameter.

Controlling interlayer spacing of GO membranes via the insertion of GN for high separation performance

  • Xuan Liu;Zhu Zhou;Hengzhang Dai;Kuang Ma;Yafei Zhang;Bin Li
    • Membrane and Water Treatment
    • /
    • v.14 no.3
    • /
    • pp.107-114
    • /
    • 2023
  • Graphene oxide (GO) membranes have attracted extensive attention in water treatment and related fields. However, GO films are unstable and have low permeability, which have hindered their further development. In this paper, a simple and effective method was used in which GO and single-layer graphene (GN) were mixed, and the layer spacing was effectively controlled by accurately controlling the ratio of GO to GN. GO-GN composite membranes have excellent stability, salt rejection (95.4%), and water flux (26 L m-2 h-1 bar-1). This unique design structure can be used for precise and effective regulation of the layer spacing in GO, improving the rejection rate, and increasing water flux via the enhancement of low-friction capillary action. The rational development and use of this unique composite membrane provides a reference for the water treatment field.

Study of the growth of Au films on Si(100) and Si films on Ge(100) surface

  • Kim, J.H.;Lee, Y.S.;Lee, K.H.;Weiss, A.;Lee, J.H.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.3
    • /
    • pp.133-138
    • /
    • 2002
  • The growth of Au films grown on a Si(100)-2x1 surface and Si films on a Ge(100)-2x1 substrate is studied using Positron-annihilation induced Auger Electron Spectroscopy(PAES), Electron induced Auger Electron Spectroscopy(EAES), and Low Energy Electron Diffraction(LEED). Previous work has shown that PAES is almost exclusively sensitive to the top-most atomic layer due to the trapping of positrons in an image potential well just outside the surface before annihilation. This surface specificity is exploited to profile the surface atomic concentrations during the growth of Au on Si(100) and Si on Ge(100) and EAES provides concentrations averaged over the top 3-10 atomic layers simultaneously. The difference in the probe-depth makes us possible to use PAES and EAES in a complementary fashion to estimate the surface and near surface concentration profiles. The results show that (i) the intermixing of Au and Si atoms occurs during the room temperature deposition, (ii) the segregated Ge layer is observed onto the Si layers deposited at 300k. In addition, the prior adsorption of hydrogen prevents the segregation of Ge on top of the deposited Si and that the hydrogen adsorption is useful in growing a thermally stable structure.

  • PDF

Design, Fabrication and Evaluation of Diamond Tip Chips for Reverse Tip Sample Scanning Probe Microscope Applications (탐침과 시편의 위치를 역전시킨 주사 탐침 현미경용 다이아몬드 탐침의 제작 및 평가)

  • Sugil Gim;Thomas Hantschel;Jin Hyeok Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.105-110
    • /
    • 2024
  • Scanning probe microscopy (SPM) has become an indispensable tool in efforts to develop the next generation of nanoelectronic devices, given its achievable nanometer spatial resolution and highly versatile ability to measure a variety of properties. Recently a new scanning probe microscope was developed to overcome the tip degradation problem of the classic SPM. The main advantage of this new method, called Reverse tip sample (RTS) SPM, is that a single tip can be replaced by a chip containing hundreds to thousands of tips. Generally for use in RTS SPM, pyramid-shaped diamond tips are made by molding on a silicon substrate. Combining RTS SPM with Scanning spreading resistance microscopy (SSRM) using the diamond tip offers the potential to perform 3D profiling of semiconductor materials. However, damage frequently occurs to the completed tips because of the complex manufacturing process. In this work, we design, fabricate, and evaluate an RTS tip chip prototype to simplify the complex manufacturing process, prevent tip damage, and shorten manufacturing time.

Fabrication and Comparative Evaluation of Soybean Hull Nanofibrillated Cellulose (대두피 나노 섬유화 셀룰로오스 제작 및 비교 평가)

  • Jin-Hoon Kim;Hui-Yun Hwang
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.150-154
    • /
    • 2024
  • In this study, nanofibrillated cellulose was extracted from soybean hulls - a by-product of soybeans - and compared with soybean hull nanofibrillated cellulose obtained by using other nanofibrillated methods. Dry soybean hulls were ground into prepare micrometer-sized powders, from which microcellulose was isolated using NaOH and HCl. The nanometer-sized cellulose was successfully extracted through ultrasonic dispersion and ball milling. The soybean hull nanofibrillated cellulose exhibited a diameter of 60-100 nm and a length of 0.3-1.0 ㎛, which matches the diameter of soybean nanofibrillated cellulose made by other nanofibrillated methods but is significantly shorter in length.