DOI QR코드

DOI QR Code

High resolution size characterization of particulate contaminants for radioactive metal waste treatment

  • Lee, Min-Ho (Korea Advanced Institute of Science and Technology, Department of Nuclear and Quantum Engineering) ;
  • Yang, Wonseok (Korea Advanced Institute of Science and Technology, Department of Nuclear and Quantum Engineering) ;
  • Chae, Nakkyu (Korea Advanced Institute of Science and Technology, Department of Nuclear and Quantum Engineering) ;
  • Choi, Sungyeol (Korea Advanced Institute of Science and Technology, Department of Nuclear and Quantum Engineering)
  • Received : 2020.07.22
  • Accepted : 2021.01.25
  • Published : 2021.07.25

Abstract

To regulate the safety protocols in nuclear facilities, radioactive aerosols have been extensively researched to understand their health impacts. However, most measured particle-size distributions remain at low resolutions, with the particle sizes ranging from nanometer to micrometer. This study combines the high-resolution detection of 500 size classes, ranging from 6 nm to 10 ㎛, for aerodynamic diameter distributions, with a regional lung deposition calculation. We applied the new approach to characterize particle-size distributions of aerosols generated during the plasma arc cutting of simulated non-radioactive steel alloy wastes. The high-resolution measured data were used to calculate the deposition ratios of the aerosols in different lung regions. The deposition ratios in the alveolar sacs contained the dominant particle sizes ranging from 0.01 to 0.1 ㎛. We determined the distribution of various metals using different vapor pressures of the alloying components and analyzed the uncertainties of lung deposition calculations using the low-resolution aerodynamic diameter data simultaneously. In high-resolution data, the changes in aerosols that can penetrate the blood system were better captured, correcting their potential risks by a maximum of 42%. The combined calculations can aid the enhancement of high-resolution measuring equipment to effectively manage radiation safety in nuclear facilities.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea grant funded by the Ministry of Science and ICT, Korea (Grant No. NRF-2017M2A8A4018596) and the Korea Institute of Energy Technology Evaluation and Planning grant funded by the Ministry of Trade, Industry and Energy, Korea (Grant No. 20201520300060).

References

  1. J. Onodera, H. Yabuta, T. Nishizoro, C. Nakamura, Y. Ikezawa, Characterization of aerosols from dismantling work ofexperimental nuclear power reactor decommissioning, J. Aerosol Sci. 22 (1991) S747-S750. https://doi.org/10.1016/S0021-8502(05)80208-3
  2. F.G. Cesari, M. Rogante, A. Giostri, Results of the experimental campaign on contaminated metal components parameters and suggestions for safely NPP component dismantling, Nucl. Eng. Des. 238 (2008) 2801-2810. https://doi.org/10.1016/j.nucengdes.2008.05.009
  3. S. Choi, W.I. Ko, Dynamic assessments on high-level waste and low- and intermediate-level waste generation from open and closed nuclear fuel cycles in Republic of Korea, J. Nucl. Sci. Technol. 51 (2014) 1141-1153. https://doi.org/10.1080/00223131.2014.905804
  4. S. Choi, H.J. Lee, W.I. Ko, Dynamic analysis of once-through and closed fuel cycle economics using Monte Carlo simulation, Nucl. Eng. Des. 277 (2014) 234-247. https://doi.org/10.1016/j.nucengdes.2014.06.027
  5. C. Kim, S. Choi, M. Shin, Review-electro-kinetic decontamination of radioactive concrete waste from nuclear power plants, J. Electrochem. Soc. 165 (2018) E330-E344. https://doi.org/10.1149/2.0281809jes
  6. N. Chae, M.H. Lee, S. Choi, B.G. Park, J.S. Song, Aerodynamic diameter and radioactivity distributions of radioactive aerosols from activated metals cutting for nuclear power plant decommissioning, J. Hazard Mater. 369 (2019) 727-745. https://doi.org/10.1016/j.jhazmat.2019.02.093
  7. M.-H. Lee, W. Yang, N. Chae, S. Choi, Performance Assessment of HEPA Filter against Radioactive Aerosols from Metal Cutting during Nuclear Decommissioning, Nuclear Engineering and Technology, 2019.
  8. M.-H. Lee, W. Yang, N. Chae, S. Choi, Aerodynamic diameter distribution of aerosols from plasma arc cutting for steels at different cutting power levels, J. Radioanal. Nucl. Chem. 323 (2020) 613-624. https://doi.org/10.1007/s10967-019-06967-y
  9. C. IAEA, Radioactive Particles in the Environment: Sources, Particle Characteristics, and Analytical Techniques, IAEA-TECDOC Vienna, 2011, p. 32.
  10. J. Severa, J. Bar, Handbook of Radioactive Contamination and Decontamination, Elsevier, 1991.
  11. K. Talaat, J. Xi, P. Baldez, A. Hecht, Radiation dosimetry of inhaled radioactive aerosols: CFPD and MCNP transport simulations of radionuclides in the lung, Sci. Rep. 9 (2019) 17450. https://doi.org/10.1038/s41598-019-54040-1
  12. J.K. Jakobsson, J. Hedlund, J. Kumlin, P. Wollmer, J. Londahl, A new method for measuring lung deposition efficiency of airborne nanoparticles in a single breath, Sci. Rep. 6 (2016) 36147. https://doi.org/10.1038/srep36147
  13. R. Fishler, P. Hofemeier, Y. Etzion, Y. Dubowski, J. Sznitman, Particle dynamics and deposition in true-scale pulmonary acinar models, Sci. Rep. 5 (2015) 14071. https://doi.org/10.1038/srep14071
  14. P. Demokritou, S.J. Lee, S.T. Ferguson, P. Koutrakis, A compact multistage (cascade) impactor for the characterization of atmospheric' aerosols, J. Aerosol Sci. 35 (2004) 281-299. https://doi.org/10.1016/j.jaerosci.2003.09.003
  15. A. Jarvinen, M. Aitomaa, A. Rostedt, J. Keskinen, J. Yli-Ojanpera, Calibration of the new electrical low pressure impactor (ELPI plus ), J. Aerosol Sci. 69 (2014) 150-159. https://doi.org/10.1016/j.jaerosci.2013.12.006
  16. J. Keskinen, K. Pietarinen, M. Lehtimaki, Electrical low-pressure impactor, J. Aerosol Sci. 23 (1992) 353-360.
  17. M. Marjamaki, J. Keskinen, D.R. Chen, D.Y.H. Pui, Performance evaluation of the electrical low-pressure impactor (ELPI), J. Aerosol Sci. 31 (2000) 249-261. https://doi.org/10.1016/S0021-8502(99)00052-X
  18. Y. Oki, M. Numajiri, T. Suzuki, Y. Kanda, T. Miura, K. Iijima, K. Kondo, Particlesize and fuming rate of radioactive aerosols generated during the heat cutting of activated metals, Appl. Radiat. Isot. 45 (1994) 553-562. https://doi.org/10.1016/0969-8043(94)90197-X
  19. J. Bernard, G. Pilot, J. Grandjean, Evaluation of Various Cutting Techniques Suitable for the Dismantling of Nuclear Components, EUR, Luxembourg), 1998.
  20. V.J. Novick, C.-J. Brodrick, S. Crawford, J. Nasiatka, K. Pierucci, V. Reyes, J. Sambrook, S. Wrobel, J. Yeary, Aerosol measurements from plasma torch cuts on stainless steel, carbon steel, and aluminum, in: Argonne National Lab, 1996.
  21. M. Ebadian, S. Dua, H. Guha, Size distribution and rate of production of airborne particulate matter generated during metal cutting, in: National Energy Technology Lab., Pittsburgh, PA (US), 2001.
  22. F. Schulze, X.H. Gao, D. Virzonis, S. Damiati, M.R. Schneider, R. Kodzius, Air quality effects on human health and approaches for its assessment through microfluidic chips, Genes 8 (2017) 244. https://doi.org/10.3390/genes8100244
  23. P.E. Morrow, Possible mechanisms to explain dust overloading of the lungs, Fund. Appl. Toxicol. 10 (1988) 369-384. https://doi.org/10.1016/0272-0590(88)90284-9
  24. C.A. Pope III, R.T. Burnett, M.J. Thun, E.E. Calle, D. Krewski, K. Ito, G.D. Thurston, Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, Jama 287 (2002) 1132-1141. https://doi.org/10.1001/jama.287.9.1132
  25. T. Zhang, B. Gao, Z. Zhou, Y. Chang, The movement and deposition of PM2.5 in the upper respiratory tract for the patients with heart failure: an elementary CFD study, Biomed. Eng. Online 15 (2016) 138. https://doi.org/10.1186/s12938-016-0281-z
  26. I.J. Yu, K.J. Kim, H.K. Chang, K.S. Song, K.T. Han, J.H. Han, S.H. Maeng, Y.H. Chung, S.H. Park, K.H. Chung, Pattern of deposition of stainless steel welding fume particles inhaled into the respiratory systems of SpragueeDawley rats exposed to a novel welding fume generating system, Toxicol. Lett. 116 (2000) 103-111. https://doi.org/10.1016/S0378-4274(00)00209-5
  27. P. Biswas, C.Y. Wu, Nanoparticles and the environment, J. Air Waste Manag. Assoc. 55 (2005) 708-746. https://doi.org/10.1080/10473289.2005.10464656
  28. J. Wang, T. Hoang, E.L. Floyd, J.L. Regens, Characterization of particulate fume and oxides emission from stainless steel plasma cutting, Ann Work Expo Health 61 (2017) 311-320. https://doi.org/10.1093/annweh/wxw031
  29. S. Ramakrishnan, M.W. Rogozinski, Properties of electric arc plasma for metal cutting, J. Phys. D Appl. Phys. 30 (1997) 636-644. https://doi.org/10.1088/0022-3727/30/4/019
  30. D. Krajcarz, Comparison metal water jet cutting with laser and plasma cutting, 24th Daaam International Symposium on Intelligent Manufacturing and Automation 2013 (69) (2014) 838-843.
  31. T. Shimada, T. Tanaka, Characterization on the radioactive aerosols dispersed during plasma arc cutting of radioactive metal piping, J. Radioanal. Nucl. Chem. 303 (2015) 1345-1349. https://doi.org/10.1007/s10967-014-3629-5
  32. K.Y. Kirichenko, A.I. Agoshkov, V.A. Drozd, A.V. Gridasov, A.S. Kholodov, S.P. Kobylyakov, D.Y. Kosyanov, A.M. Zakharenko, A.A. Karabtsov, S.R. Shimanskii, A.K. Stratidakis, Y.O. Mezhuev, A.M. Tsatsakis, K.S. Golokhvast, Characterization of fume particles generated during arc welding with various covered electrodes, Sci. Rep. 8 (2018) 17169. https://doi.org/10.1038/s41598-018-35494-1
  33. M. Oprya, S. Kiro, A. Worobiec, B. Horemans, L. Darchuk, V. Novakovic, A. Ennan, R. Van Grieken, Size distribution and chemical properties of welding fumes of inhalable particles, J. Aerosol Sci. 45 (2012) 50-57. https://doi.org/10.1016/j.jaerosci.2011.10.004
  34. P. Hewett, Estimation of regional pulmonary deposition and exposure for fumes from SMAW and GMAW mild and stainless steel consumables, Am. Ind. Hyg. Assoc. J. 56 (1995) 136-142. https://doi.org/10.1080/15428119591017169
  35. M.P. Holsapple, W.H. Farland, T.D. Landry, N.A. Monteiro-Riviere, J.M. Carter, N.J. Walker, K.V. Thomas, Research strategies for safety evaluation of nanomaterials, part II: toxicological and safety evaluation of nanomaterials, current challenges and data needs, Toxicol. Sci. 88 (2005) 12-17. https://doi.org/10.1093/toxsci/kfi293
  36. V. Voitkevich, Methods for studying welding fumes the Paton, Weld. J. 3 (1982) 51-54.
  37. N.T. Jenkins, W.M.G. Pierce, T.W. Eagar, Particle size distribution of gas metal and flux cored arc welding fumes, Weld. J. 84 (2005) 156s-163s.
  38. J.W. Sowards, J.C. Lippold, D.W. Dickinson, A.J. Ramirez, Characterization of welding fume from SMAW electrodes - Part I, Weld. J. 87 (2008) 106s-112s.
  39. J.W. Sowards, A.J. Ramirez, D.W. Dickinson, J.C. Lippold, Characterization of welding fume from SMAW electrodes - Part II, Weld. J. 89 (2010) 82s-90s.
  40. A.T. Zimmer, P. Biswas, Characterization of the aerosols resulting from arc welding processes, J. Aerosol Sci. 32 (2001) 993-1008.
  41. P.J. Hewitt, M.G. Madden, Welding process parameters and hexavalent chromium in mig fume, Ann. Occup. Hyg. 30 (1986) 427-434. https://doi.org/10.1093/annhyg/30.4.427
  42. J.F. Vanderwal, Further-studies on the exposure of welders to fumes, chromium, nickel and gases in Dutch industries - plasma welding and cutting of stainless-steel, Ann. Occup. Hyg. 30 (1986) 153-161. https://doi.org/10.1093/annhyg/30.2.153
  43. C.S. Yoon, N.W. Paik, J.H. Kim, Fume generation and content of total chromium and hexavalent chromium in flux-cored arc welding, Ann. Occup. Hyg. 47 (2003) 671-680. https://doi.org/10.1093/annhyg/meg063
  44. P. Stacey, O. Butler, Performance of laboratories analysing welding fume on filter samples: results from the WASP proficiency testing scheme, Ann. Occup. Hyg. 52 (2008) 287-295. https://doi.org/10.1093/annhyg/men016
  45. B. Berlinger, M. Naray, I. Sajo, G. Zaray, Critical evaluation of sequential leaching procedures for the determination of Ni and Mn species in welding fumes, Ann. Occup. Hyg. 53 (2009) 333-340. https://doi.org/10.1093/annhyg/mep013
  46. J.M. Antonini, J.R. Roberts, D. Schwegler-Berry, R.R. Mercer, Comparative microscopic study of human and rat lungs after overexposure to welding fume, Ann. Occup. Hyg. 57 (2013) 1167-1179. https://doi.org/10.1093/annhyg/met032
  47. D.M. Cate, P. Nanthasurasak, P. Riwkulkajorn, C. L'Orange, C.S. Henry, J. Volckens, Rapid detection of transition metals in welding fumes using paper-based analytical devices, Ann. Occup. Hyg. 58 (2014) 413-423. https://doi.org/10.1093/annhyg/met078
  48. N.B. Fethke, T.M. Peters, S. Leonard, M. Metwali, I.A. Mudunkotuwa, Reduction of biomechanical and welding fume exposures in stud welding, Ann. Occup. Hyg. 60 (2016) 387-401. https://doi.org/10.1093/annhyg/mev080
  49. H. Graczyk, N. Lewinski, J. Zhao, N. Concha-Lozano, M. Riediker, Characterization of tungsten inert gas (TIG) welding fume generated by apprentice welders, Ann. Occup. Hyg. 60 (2016) 205-219. https://doi.org/10.1093/annhyg/mev074
  50. K.W. Hanley, R. Andrews, S. Bertke, K. Ashley, Exploring manganese fractionation using a sequential extraction method to evaluate welders' gas metal arc welding exposures during heavy equipment manufacturing, Ann Work Expo Health 61 (2017) 123-134.
  51. D. Robertson, C. Thomas, S. Pratt, E. Lepel, V. Thomas, Low-level Radioactive Waste Classification, Characterization, and Assessment: Waste Streams and Neutron-Activated Metals, NUREG Report CR-6567, PNNL-11659, 2000.
  52. J.R. Davis, Alloying: Understanding the Basics, ASM international, 2001.
  53. C. Association, THE COPPER ADVANTAGE A Guide to Working with Copper and Copper Alloys, Copper Development Association, New York, 2013.
  54. J.R. Davis, K. Mills, S. Lampman, Metals handbook, in: Properties and Selection: Irons, Steels, and High-Performance Alloys, vol. 1, ASM International, Materials Park, Ohio 44073, USA, 1990, p. 1990, 1063.
  55. S. Saari, A. Arffman, J. Harra, T. Ronkko, J. Keskinen, Performance evaluation of the HR-ELPI plus inversion, Aerosol. Sci. Technol. 52 (2018) 1037-1047. https://doi.org/10.1080/02786826.2018.1500679
  56. ICRP, ICRP publication 68: dose coefficients for intakes of radionuclides by workers, Ann. ICRP (1994) 24.
  57. ICRP, ICRP Publication 66, Human respiratory tract model for radiological protection, Ann. ICRP (1994) 24.
  58. ICRP, ICRP publication 30 (Part 1): limits for intakes of radionuclides by workers, in: Annals of the ICRP, 1979.
  59. S. Guha, P. Hariharan, M.R. Myers, Enhancement of ICRP's lung deposition model for pathogenic bioaerosols, Aerosol. Sci. Technol. 48 (2014) 1226-1235. https://doi.org/10.1080/02786826.2014.975334
  60. V.K.H. Bui, J.-Y. Moon, M. Chae, D. Park, Y.-C. Lee, Prediction of aerosol deposition in the human respiratory tract via computational models: a review with recent updates, Atmosphere 11 (2020) 137. https://doi.org/10.3390/atmos11020137
  61. T.C. Carvalho, J.I. Peters, R.O. Williams 3rd, Influence of particle size on regional lung deposition-what evidence is there? Int. J. Pharm. 406 (2011) 1-10. https://doi.org/10.1016/j.ijpharm.2010.12.040
  62. W.C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, John Wiley & Sons, 2012.
  63. V.I. Vishnyakov, S.A. Kiro, M.V. Oprya, O.D. Chursina, A.A. Ennan, Numerical and experimental study of the fume chemical composition in gas metal arc welding, Aerosol Science and Engineering 2 (2018) 109-117. https://doi.org/10.1007/s41810-018-0028-2
  64. M.v. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Losungen, Z. Phys. Chem. 92 (1918) 129-168. https://doi.org/10.1515/zpch-1918-9209
  65. J. Geng, H. Park, E. Sajo, Simulation of aerosol coagulation and deposition under multiple flow regimes with arbitrary computational precision, Aerosol. Sci. Technol. 47 (2013) 530-542. https://doi.org/10.1080/02786826.2013.770126
  66. V.I. Vishnyakov, S.A. Kiro, A.A. Ennan, Formation of primary particles in welding fume, J. Aerosol Sci. 58 (2013) 9-16. https://doi.org/10.1016/j.jaerosci.2012.12.003
  67. J. Kannosto, A. Virtanen, M. Lemmetty, J.M. Makela, J. Keskinen, H. Junninen, T. Hussein, P. Aalto, M. Kulmala, Mode resolved density of atmospheric aerosol particles, Atmos. Chem. Phys. 8 (2008) 5327-5337. https://doi.org/10.5194/acp-8-5327-2008
  68. X.L. Wang, S. Barbanotti, J. Eschke, K. Jensch, R. Klos, W. Maschmann, B. Petersen, O. Sawlanski, Thermal performance analysis and measurements of the prototype cryomodules of European XFEL accelerator - part I, Nucl. Instrum. Methods A 763 (2014) 701-710. https://doi.org/10.1016/j.nima.2014.06.059
  69. M. Levenson, K.D. Crowley, N.R. Council, Research Reactor Aluminum Spent Fuel: Treatment Options for Disposal, National Academies Press, 1998.
  70. M. Hussain, P. Madl, A. Khan, Lung deposition predictions of airborne particles and the emergence of contemporary diseases, Part-I, Health 2 (2011) 51-59. https://doi.org/10.4236/health.2010.21009
  71. M.R. Bailey, E. Ansoborlo, R.A. Guilmette, F. Paquet, Updating the ICRP human respiratory tract model, Radiat. Protect. Dosim. 127 (2007) 31-34. https://doi.org/10.1093/rpd/ncm249
  72. Y.S. Cheng, Mechanisms of pharmaceutical aerosol deposition in the respiratory tract, AAPS PharmSciTech 15 (2014) 630-640. https://doi.org/10.1208/s12249-014-0092-0
  73. J. Klumpp, L. Bertelli, KDEP: a resource for calculating particle deposition in the respiratory tract, Health Phys. 113 (2017) 110-121. https://doi.org/10.1097/HP.0000000000000679
  74. T.B. Martonen, J.A. Rosati, K.K. Isaacs, Modeling deposition of inhaled particles, in: Aerosols Handbook, CRC Press, 2004, pp. 129-172.
  75. K. Isaacs, J. Rosati, T. Martonen, L. Ruzer, N. Harley, Modeling Deposition of Inhaled Particles, Aerosols Handbook, CRC Press, Boca Raton, FL, 2012, pp. 83-128.
  76. G. Bezemer, Particle Deposition and Clearance from the Respiratory Tract, 2009.
  77. A.A. Rostami, Computational modeling of aerosol deposition in respiratory tract: a review, Inhal. Toxicol. 21 (2009) 262-290. https://doi.org/10.1080/08958370802448987
  78. G. Oberdorster, E. Oberdorster, J. Oberdorster, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles, Environ. Health Perspect. 113 (2005) 823-839. https://doi.org/10.1289/ehp.7339
  79. D.M. Brown, M.R. Wilson, W. MacNee, V. Stone, K. Donaldson, Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines, Toxicol. Appl. Pharmacol. 175 (2001) 191-199. https://doi.org/10.1006/taap.2001.9240
  80. K. Donaldson, D. Brown, A. Clouter, R. Duffin, W. MacNee, L. Renwick, L. Tran, V. Stone, The pulmonary toxicology of ultrafine particles, J. Aerosol Med. 15 (2002) 213-220. https://doi.org/10.1089/089426802320282338
  81. C.L. Tran, D. Buchanan, R.T. Cullen, A. Searl, A.D. Jones, K. Donaldson, Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance, Inhal. Toxicol. 12 (2000) 1113-1126. https://doi.org/10.1080/08958370050166796
  82. G. Oberdorster, J. Ferin, G. Finkelstein, P. Wade, N. Corson, Increased pulmonary toxicity of ultrafine particles? II. Lung lavage studies, J. Aerosol Sci. 21 (1990) 384-387. https://doi.org/10.1016/0021-8502(90)90065-6
  83. A.T. Saber, N.R. Jacobsen, P. Jackson, S.S. Poulsen, Z.O. Kyjovska, S. Halappanavar, C.L. Yauk, H. Wallin, U. Vogel, Particle-induced pulmonary acute phase response may be the causal link between particle inhalation and cardiovascular disease, Wiley interdisciplinary reviews: Nanomedicine and nanobiotechnology 6 (2014) 517-531. https://doi.org/10.1002/wnan.1279
  84. H.M. Braakhuis, M.V.D.Z. Park, I. Gosens, W.H. De Jong, F.R. Cassee, Physicochemical characteristics of nanomaterials that affect pulmonary inflammation, Part. Fibre Toxicol. 11 (2014) 18. https://doi.org/10.1186/1743-8977-11-18
  85. P.H. McMurry, The history of condensation nucleus counters, Aerosol Sci. Technol. 33 (2000) 297-322. https://doi.org/10.1080/02786820050121512
  86. M.R. Stolzenburg, P.H. McMurry, An ultrafine aerosol condensation nucleus counter, Aerosol. Sci. Technol. 14 (1991) 48-65. https://doi.org/10.1080/02786829108959470
  87. L.-E. Magnusson, J.A. Koropchak, M.P. Anisimov, V.M. Poznjakovskiy, J.F. de la Mora, Correlations for vapor nucleating critical embryo parameters, J. Phys. Chem. Ref. Data 32 (2003) 1387-1410. https://doi.org/10.1063/1.1555590
  88. P. Kulkarni, P.A. Baron, K. Willeke, Aerosol Measurement: Principles, Techniques, and Applications, John Wiley & Sons, 2011.