Browse > Article
http://dx.doi.org/10.1016/j.net.2021.01.029

High resolution size characterization of particulate contaminants for radioactive metal waste treatment  

Lee, Min-Ho (Korea Advanced Institute of Science and Technology, Department of Nuclear and Quantum Engineering)
Yang, Wonseok (Korea Advanced Institute of Science and Technology, Department of Nuclear and Quantum Engineering)
Chae, Nakkyu (Korea Advanced Institute of Science and Technology, Department of Nuclear and Quantum Engineering)
Choi, Sungyeol (Korea Advanced Institute of Science and Technology, Department of Nuclear and Quantum Engineering)
Publication Information
Nuclear Engineering and Technology / v.53, no.7, 2021 , pp. 2277-2288 More about this Journal
Abstract
To regulate the safety protocols in nuclear facilities, radioactive aerosols have been extensively researched to understand their health impacts. However, most measured particle-size distributions remain at low resolutions, with the particle sizes ranging from nanometer to micrometer. This study combines the high-resolution detection of 500 size classes, ranging from 6 nm to 10 ㎛, for aerodynamic diameter distributions, with a regional lung deposition calculation. We applied the new approach to characterize particle-size distributions of aerosols generated during the plasma arc cutting of simulated non-radioactive steel alloy wastes. The high-resolution measured data were used to calculate the deposition ratios of the aerosols in different lung regions. The deposition ratios in the alveolar sacs contained the dominant particle sizes ranging from 0.01 to 0.1 ㎛. We determined the distribution of various metals using different vapor pressures of the alloying components and analyzed the uncertainties of lung deposition calculations using the low-resolution aerodynamic diameter data simultaneously. In high-resolution data, the changes in aerosols that can penetrate the blood system were better captured, correcting their potential risks by a maximum of 42%. The combined calculations can aid the enhancement of high-resolution measuring equipment to effectively manage radiation safety in nuclear facilities.
Keywords
Radioactive aerosols; Decommissioning; Plasma arc cutting; Aerodynamic diameter; $HR-ELPI^+$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.K. Jakobsson, J. Hedlund, J. Kumlin, P. Wollmer, J. Londahl, A new method for measuring lung deposition efficiency of airborne nanoparticles in a single breath, Sci. Rep. 6 (2016) 36147.   DOI
2 A. Jarvinen, M. Aitomaa, A. Rostedt, J. Keskinen, J. Yli-Ojanpera, Calibration of the new electrical low pressure impactor (ELPI plus ), J. Aerosol Sci. 69 (2014) 150-159.   DOI
3 M. Ebadian, S. Dua, H. Guha, Size distribution and rate of production of airborne particulate matter generated during metal cutting, in: National Energy Technology Lab., Pittsburgh, PA (US), 2001.
4 C.A. Pope III, R.T. Burnett, M.J. Thun, E.E. Calle, D. Krewski, K. Ito, G.D. Thurston, Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, Jama 287 (2002) 1132-1141.   DOI
5 J. Severa, J. Bar, Handbook of Radioactive Contamination and Decontamination, Elsevier, 1991.
6 V. Voitkevich, Methods for studying welding fumes the Paton, Weld. J. 3 (1982) 51-54.
7 J.W. Sowards, A.J. Ramirez, D.W. Dickinson, J.C. Lippold, Characterization of welding fume from SMAW electrodes - Part II, Weld. J. 89 (2010) 82s-90s.
8 J.F. Vanderwal, Further-studies on the exposure of welders to fumes, chromium, nickel and gases in Dutch industries - plasma welding and cutting of stainless-steel, Ann. Occup. Hyg. 30 (1986) 153-161.   DOI
9 B. Berlinger, M. Naray, I. Sajo, G. Zaray, Critical evaluation of sequential leaching procedures for the determination of Ni and Mn species in welding fumes, Ann. Occup. Hyg. 53 (2009) 333-340.   DOI
10 Y.S. Cheng, Mechanisms of pharmaceutical aerosol deposition in the respiratory tract, AAPS PharmSciTech 15 (2014) 630-640.   DOI
11 G. Oberdorster, E. Oberdorster, J. Oberdorster, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles, Environ. Health Perspect. 113 (2005) 823-839.   DOI
12 K. Donaldson, D. Brown, A. Clouter, R. Duffin, W. MacNee, L. Renwick, L. Tran, V. Stone, The pulmonary toxicology of ultrafine particles, J. Aerosol Med. 15 (2002) 213-220.   DOI
13 P.H. McMurry, The history of condensation nucleus counters, Aerosol Sci. Technol. 33 (2000) 297-322.   DOI
14 M. Oprya, S. Kiro, A. Worobiec, B. Horemans, L. Darchuk, V. Novakovic, A. Ennan, R. Van Grieken, Size distribution and chemical properties of welding fumes of inhalable particles, J. Aerosol Sci. 45 (2012) 50-57.   DOI
15 C.L. Tran, D. Buchanan, R.T. Cullen, A. Searl, A.D. Jones, K. Donaldson, Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance, Inhal. Toxicol. 12 (2000) 1113-1126.   DOI
16 A.T. Saber, N.R. Jacobsen, P. Jackson, S.S. Poulsen, Z.O. Kyjovska, S. Halappanavar, C.L. Yauk, H. Wallin, U. Vogel, Particle-induced pulmonary acute phase response may be the causal link between particle inhalation and cardiovascular disease, Wiley interdisciplinary reviews: Nanomedicine and nanobiotechnology 6 (2014) 517-531.   DOI
17 M.R. Stolzenburg, P.H. McMurry, An ultrafine aerosol condensation nucleus counter, Aerosol. Sci. Technol. 14 (1991) 48-65.   DOI
18 L.-E. Magnusson, J.A. Koropchak, M.P. Anisimov, V.M. Poznjakovskiy, J.F. de la Mora, Correlations for vapor nucleating critical embryo parameters, J. Phys. Chem. Ref. Data 32 (2003) 1387-1410.   DOI
19 P. Kulkarni, P.A. Baron, K. Willeke, Aerosol Measurement: Principles, Techniques, and Applications, John Wiley & Sons, 2011.
20 H.M. Braakhuis, M.V.D.Z. Park, I. Gosens, W.H. De Jong, F.R. Cassee, Physicochemical characteristics of nanomaterials that affect pulmonary inflammation, Part. Fibre Toxicol. 11 (2014) 18.   DOI
21 J. Klumpp, L. Bertelli, KDEP: a resource for calculating particle deposition in the respiratory tract, Health Phys. 113 (2017) 110-121.   DOI
22 S. Choi, H.J. Lee, W.I. Ko, Dynamic analysis of once-through and closed fuel cycle economics using Monte Carlo simulation, Nucl. Eng. Des. 277 (2014) 234-247.   DOI
23 M. Levenson, K.D. Crowley, N.R. Council, Research Reactor Aluminum Spent Fuel: Treatment Options for Disposal, National Academies Press, 1998.
24 M. Hussain, P. Madl, A. Khan, Lung deposition predictions of airborne particles and the emergence of contemporary diseases, Part-I, Health 2 (2011) 51-59.   DOI
25 G. Bezemer, Particle Deposition and Clearance from the Respiratory Tract, 2009.
26 I.J. Yu, K.J. Kim, H.K. Chang, K.S. Song, K.T. Han, J.H. Han, S.H. Maeng, Y.H. Chung, S.H. Park, K.H. Chung, Pattern of deposition of stainless steel welding fume particles inhaled into the respiratory systems of SpragueeDawley rats exposed to a novel welding fume generating system, Toxicol. Lett. 116 (2000) 103-111.   DOI
27 X.L. Wang, S. Barbanotti, J. Eschke, K. Jensch, R. Klos, W. Maschmann, B. Petersen, O. Sawlanski, Thermal performance analysis and measurements of the prototype cryomodules of European XFEL accelerator - part I, Nucl. Instrum. Methods A 763 (2014) 701-710.   DOI
28 F. Schulze, X.H. Gao, D. Virzonis, S. Damiati, M.R. Schneider, R. Kodzius, Air quality effects on human health and approaches for its assessment through microfluidic chips, Genes 8 (2017) 244.   DOI
29 P.E. Morrow, Possible mechanisms to explain dust overloading of the lungs, Fund. Appl. Toxicol. 10 (1988) 369-384.   DOI
30 T. Zhang, B. Gao, Z. Zhou, Y. Chang, The movement and deposition of PM2.5 in the upper respiratory tract for the patients with heart failure: an elementary CFD study, Biomed. Eng. Online 15 (2016) 138.   DOI
31 T. Shimada, T. Tanaka, Characterization on the radioactive aerosols dispersed during plasma arc cutting of radioactive metal piping, J. Radioanal. Nucl. Chem. 303 (2015) 1345-1349.   DOI
32 M. Marjamaki, J. Keskinen, D.R. Chen, D.Y.H. Pui, Performance evaluation of the electrical low-pressure impactor (ELPI), J. Aerosol Sci. 31 (2000) 249-261.   DOI
33 J. Bernard, G. Pilot, J. Grandjean, Evaluation of Various Cutting Techniques Suitable for the Dismantling of Nuclear Components, EUR, Luxembourg), 1998.
34 V.J. Novick, C.-J. Brodrick, S. Crawford, J. Nasiatka, K. Pierucci, V. Reyes, J. Sambrook, S. Wrobel, J. Yeary, Aerosol measurements from plasma torch cuts on stainless steel, carbon steel, and aluminum, in: Argonne National Lab, 1996.
35 S. Ramakrishnan, M.W. Rogozinski, Properties of electric arc plasma for metal cutting, J. Phys. D Appl. Phys. 30 (1997) 636-644.   DOI
36 M.R. Bailey, E. Ansoborlo, R.A. Guilmette, F. Paquet, Updating the ICRP human respiratory tract model, Radiat. Protect. Dosim. 127 (2007) 31-34.   DOI
37 P. Biswas, C.Y. Wu, Nanoparticles and the environment, J. Air Waste Manag. Assoc. 55 (2005) 708-746.   DOI
38 D. Krajcarz, Comparison metal water jet cutting with laser and plasma cutting, 24th Daaam International Symposium on Intelligent Manufacturing and Automation 2013 (69) (2014) 838-843.
39 V.I. Vishnyakov, S.A. Kiro, A.A. Ennan, Formation of primary particles in welding fume, J. Aerosol Sci. 58 (2013) 9-16.   DOI
40 J. Kannosto, A. Virtanen, M. Lemmetty, J.M. Makela, J. Keskinen, H. Junninen, T. Hussein, P. Aalto, M. Kulmala, Mode resolved density of atmospheric aerosol particles, Atmos. Chem. Phys. 8 (2008) 5327-5337.   DOI
41 K. Isaacs, J. Rosati, T. Martonen, L. Ruzer, N. Harley, Modeling Deposition of Inhaled Particles, Aerosols Handbook, CRC Press, Boca Raton, FL, 2012, pp. 83-128.
42 G. Oberdorster, J. Ferin, G. Finkelstein, P. Wade, N. Corson, Increased pulmonary toxicity of ultrafine particles? II. Lung lavage studies, J. Aerosol Sci. 21 (1990) 384-387.   DOI
43 T.B. Martonen, J.A. Rosati, K.K. Isaacs, Modeling deposition of inhaled particles, in: Aerosols Handbook, CRC Press, 2004, pp. 129-172.
44 N.T. Jenkins, W.M.G. Pierce, T.W. Eagar, Particle size distribution of gas metal and flux cored arc welding fumes, Weld. J. 84 (2005) 156s-163s.
45 D.M. Cate, P. Nanthasurasak, P. Riwkulkajorn, C. L'Orange, C.S. Henry, J. Volckens, Rapid detection of transition metals in welding fumes using paper-based analytical devices, Ann. Occup. Hyg. 58 (2014) 413-423.   DOI
46 S. Choi, W.I. Ko, Dynamic assessments on high-level waste and low- and intermediate-level waste generation from open and closed nuclear fuel cycles in Republic of Korea, J. Nucl. Sci. Technol. 51 (2014) 1141-1153.   DOI
47 C. Kim, S. Choi, M. Shin, Review-electro-kinetic decontamination of radioactive concrete waste from nuclear power plants, J. Electrochem. Soc. 165 (2018) E330-E344.   DOI
48 N. Chae, M.H. Lee, S. Choi, B.G. Park, J.S. Song, Aerodynamic diameter and radioactivity distributions of radioactive aerosols from activated metals cutting for nuclear power plant decommissioning, J. Hazard Mater. 369 (2019) 727-745.   DOI
49 K.Y. Kirichenko, A.I. Agoshkov, V.A. Drozd, A.V. Gridasov, A.S. Kholodov, S.P. Kobylyakov, D.Y. Kosyanov, A.M. Zakharenko, A.A. Karabtsov, S.R. Shimanskii, A.K. Stratidakis, Y.O. Mezhuev, A.M. Tsatsakis, K.S. Golokhvast, Characterization of fume particles generated during arc welding with various covered electrodes, Sci. Rep. 8 (2018) 17169.   DOI
50 M.P. Holsapple, W.H. Farland, T.D. Landry, N.A. Monteiro-Riviere, J.M. Carter, N.J. Walker, K.V. Thomas, Research strategies for safety evaluation of nanomaterials, part II: toxicological and safety evaluation of nanomaterials, current challenges and data needs, Toxicol. Sci. 88 (2005) 12-17.   DOI
51 A.T. Zimmer, P. Biswas, Characterization of the aerosols resulting from arc welding processes, J. Aerosol Sci. 32 (2001) 993-1008.
52 C.S. Yoon, N.W. Paik, J.H. Kim, Fume generation and content of total chromium and hexavalent chromium in flux-cored arc welding, Ann. Occup. Hyg. 47 (2003) 671-680.   DOI
53 P. Stacey, O. Butler, Performance of laboratories analysing welding fume on filter samples: results from the WASP proficiency testing scheme, Ann. Occup. Hyg. 52 (2008) 287-295.   DOI
54 J.M. Antonini, J.R. Roberts, D. Schwegler-Berry, R.R. Mercer, Comparative microscopic study of human and rat lungs after overexposure to welding fume, Ann. Occup. Hyg. 57 (2013) 1167-1179.   DOI
55 J.W. Sowards, J.C. Lippold, D.W. Dickinson, A.J. Ramirez, Characterization of welding fume from SMAW electrodes - Part I, Weld. J. 87 (2008) 106s-112s.
56 D. Robertson, C. Thomas, S. Pratt, E. Lepel, V. Thomas, Low-level Radioactive Waste Classification, Characterization, and Assessment: Waste Streams and Neutron-Activated Metals, NUREG Report CR-6567, PNNL-11659, 2000.
57 J.R. Davis, Alloying: Understanding the Basics, ASM international, 2001.
58 H. Graczyk, N. Lewinski, J. Zhao, N. Concha-Lozano, M. Riediker, Characterization of tungsten inert gas (TIG) welding fume generated by apprentice welders, Ann. Occup. Hyg. 60 (2016) 205-219.   DOI
59 K.W. Hanley, R. Andrews, S. Bertke, K. Ashley, Exploring manganese fractionation using a sequential extraction method to evaluate welders' gas metal arc welding exposures during heavy equipment manufacturing, Ann Work Expo Health 61 (2017) 123-134.
60 C. Association, THE COPPER ADVANTAGE A Guide to Working with Copper and Copper Alloys, Copper Development Association, New York, 2013.
61 J.R. Davis, K. Mills, S. Lampman, Metals handbook, in: Properties and Selection: Irons, Steels, and High-Performance Alloys, vol. 1, ASM International, Materials Park, Ohio 44073, USA, 1990, p. 1990, 1063.
62 S. Saari, A. Arffman, J. Harra, T. Ronkko, J. Keskinen, Performance evaluation of the HR-ELPI plus inversion, Aerosol. Sci. Technol. 52 (2018) 1037-1047.   DOI
63 ICRP, ICRP publication 68: dose coefficients for intakes of radionuclides by workers, Ann. ICRP (1994) 24.
64 ICRP, ICRP Publication 66, Human respiratory tract model for radiological protection, Ann. ICRP (1994) 24.
65 W.C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, John Wiley & Sons, 2012.
66 ICRP, ICRP publication 30 (Part 1): limits for intakes of radionuclides by workers, in: Annals of the ICRP, 1979.
67 S. Guha, P. Hariharan, M.R. Myers, Enhancement of ICRP's lung deposition model for pathogenic bioaerosols, Aerosol. Sci. Technol. 48 (2014) 1226-1235.   DOI
68 V.K.H. Bui, J.-Y. Moon, M. Chae, D. Park, Y.-C. Lee, Prediction of aerosol deposition in the human respiratory tract via computational models: a review with recent updates, Atmosphere 11 (2020) 137.   DOI
69 M.v. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Losungen, Z. Phys. Chem. 92 (1918) 129-168.   DOI
70 V.I. Vishnyakov, S.A. Kiro, M.V. Oprya, O.D. Chursina, A.A. Ennan, Numerical and experimental study of the fume chemical composition in gas metal arc welding, Aerosol Science and Engineering 2 (2018) 109-117.   DOI
71 J. Onodera, H. Yabuta, T. Nishizoro, C. Nakamura, Y. Ikezawa, Characterization of aerosols from dismantling work ofexperimental nuclear power reactor decommissioning, J. Aerosol Sci. 22 (1991) S747-S750.   DOI
72 M.-H. Lee, W. Yang, N. Chae, S. Choi, Performance Assessment of HEPA Filter against Radioactive Aerosols from Metal Cutting during Nuclear Decommissioning, Nuclear Engineering and Technology, 2019.
73 C. IAEA, Radioactive Particles in the Environment: Sources, Particle Characteristics, and Analytical Techniques, IAEA-TECDOC Vienna, 2011, p. 32.
74 K. Talaat, J. Xi, P. Baldez, A. Hecht, Radiation dosimetry of inhaled radioactive aerosols: CFPD and MCNP transport simulations of radionuclides in the lung, Sci. Rep. 9 (2019) 17450.   DOI
75 R. Fishler, P. Hofemeier, Y. Etzion, Y. Dubowski, J. Sznitman, Particle dynamics and deposition in true-scale pulmonary acinar models, Sci. Rep. 5 (2015) 14071.   DOI
76 J. Keskinen, K. Pietarinen, M. Lehtimaki, Electrical low-pressure impactor, J. Aerosol Sci. 23 (1992) 353-360.
77 N.B. Fethke, T.M. Peters, S. Leonard, M. Metwali, I.A. Mudunkotuwa, Reduction of biomechanical and welding fume exposures in stud welding, Ann. Occup. Hyg. 60 (2016) 387-401.   DOI
78 M.-H. Lee, W. Yang, N. Chae, S. Choi, Aerodynamic diameter distribution of aerosols from plasma arc cutting for steels at different cutting power levels, J. Radioanal. Nucl. Chem. 323 (2020) 613-624.   DOI
79 J. Wang, T. Hoang, E.L. Floyd, J.L. Regens, Characterization of particulate fume and oxides emission from stainless steel plasma cutting, Ann Work Expo Health 61 (2017) 311-320.   DOI
80 P. Hewett, Estimation of regional pulmonary deposition and exposure for fumes from SMAW and GMAW mild and stainless steel consumables, Am. Ind. Hyg. Assoc. J. 56 (1995) 136-142.   DOI
81 J. Geng, H. Park, E. Sajo, Simulation of aerosol coagulation and deposition under multiple flow regimes with arbitrary computational precision, Aerosol. Sci. Technol. 47 (2013) 530-542.   DOI
82 Y. Oki, M. Numajiri, T. Suzuki, Y. Kanda, T. Miura, K. Iijima, K. Kondo, Particlesize and fuming rate of radioactive aerosols generated during the heat cutting of activated metals, Appl. Radiat. Isot. 45 (1994) 553-562.   DOI
83 D.M. Brown, M.R. Wilson, W. MacNee, V. Stone, K. Donaldson, Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines, Toxicol. Appl. Pharmacol. 175 (2001) 191-199.   DOI
84 P. Demokritou, S.J. Lee, S.T. Ferguson, P. Koutrakis, A compact multistage (cascade) impactor for the characterization of atmospheric' aerosols, J. Aerosol Sci. 35 (2004) 281-299.   DOI
85 F.G. Cesari, M. Rogante, A. Giostri, Results of the experimental campaign on contaminated metal components parameters and suggestions for safely NPP component dismantling, Nucl. Eng. Des. 238 (2008) 2801-2810.   DOI
86 A.A. Rostami, Computational modeling of aerosol deposition in respiratory tract: a review, Inhal. Toxicol. 21 (2009) 262-290.   DOI
87 P.J. Hewitt, M.G. Madden, Welding process parameters and hexavalent chromium in mig fume, Ann. Occup. Hyg. 30 (1986) 427-434.   DOI
88 T.C. Carvalho, J.I. Peters, R.O. Williams 3rd, Influence of particle size on regional lung deposition-what evidence is there? Int. J. Pharm. 406 (2011) 1-10.   DOI