• Title/Summary/Keyword: Nanofibrous scaffold

Search Result 14, Processing Time 0.017 seconds

Effects of the Mechanical Stretch on Aligned Multi-Layered Nanofibrous Scaffolds Seeded with Smooth Muscle Cells (기계적 자극이 다층 구조의 나노파이버 지지체의 평활근 세포에 미치는 영향)

  • Shin, Ji-Won;Kim, Dong-Hwa;Heo, Su-Jin;Kim, Su-Hyang;Kim, Young-Jick;Shin, Jung-Woog
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.1
    • /
    • pp.52-58
    • /
    • 2008
  • The object of this study is to investigate the effects of intermittent cyclic stretching on the smooth muscle cells (SMCs) seeded onto aligned multi-layered fibrous scaffold. To make multi-layered fibrous scaffold, polyurethane (PU) and poly(ethylene oxide) (PEO) were electrospun alternatively, then were immersed into distilled water to extract PEO. Various types of scaffolds were fabricated depending on fiber directions, i.e., aligned or randomly oriented. The direction of stretching was either parallel or vertical to the fiber direction for the aligned scaffolds. The stretching was also applied to the randomly aligned scaffolds. The duration of stretching was 2 min with 15 min resting period. During the stretching, the maximum and minimum strain was adjusted to be 10 and 7%, respectively with the frequency of 1 Hz. The bioactivities of cells on the scaffolds were assessed by quantifying DNA, collagen, and glycosaminoglycan (GAG) levels. And the cell morphology was observed by staining F-actin. SMCs under parallel stretching to the fiber direction responded more positively than those in other conditions. From the results, we could explain the morphological effect of a substrate on cellular activities. In addition the synergistic effects of substrate and mechanical stimuli effects were confirmed.

Dual Electrospinning to Manufacture Hybrid Nanofibrous Scaffold using Polyurethane and Poly(Ethylene Oxide) (Polyurethane과 Poly(Ethylene Oxide)를 이용한 hybrid 나노섬유 지지체의 제작)

  • Shin, Ji-Won;Shin, Ho-Jun;Heo, Su-Jin;Kim, Ji-Hee;Hwang, Young-Mi;Kim, Dong-Hwa;Shin, Jung-Woog
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.5
    • /
    • pp.224-228
    • /
    • 2006
  • The object of this study is to investigate the potential of dual-electrospun polymer based structure for vascular tissue engineering, especially for the medium or small sue blood vessels. Polyurethane(PU), which is known to be biocompatible in this area, was electrospun with poly(ethylene oxide) (PEO). Concentration of PU was fixed at 20wt%, while that of PEO was set from 15 to 35wt%. Morphological features were observed by SEM image and measurement of porosity and cellular responses were tested before and after extracting PEO from the hybrid scaffolds by immersing the scaffolds into distilled water. The diameter of PEO fibers were ranged from 200nm to 500nm. The lower concentration of PEO tended to show beads. The porosity of the scaffolds after extracting PEO was highly increased with higher concentration of PEO as expected. Also, higher proliferation rate of smooth muscle cells was observed at higher concentration of PEO than at the lower concentration and without PEO. As conclusions, this dual electrospinning technique combined with PU and PEO is expected to overcome the current barrier of cell penetration by providing more space for cells to proliferation.

Using Taguchi design of experiments for the optimization of electrospun thermoplastic polyurethane scaffolds

  • Nezadi, Maryam;Keshvari, Hamid;Yousefzadeh, Maryam
    • Advances in nano research
    • /
    • v.10 no.1
    • /
    • pp.59-69
    • /
    • 2021
  • Electrospinning is a cost-effective and versatile method for producing submicron fibers. Although this method is relatively simple, at the theoretical level the interactions between process parameters and their influence on the fiber morphology are not yet fully understood. In this paper, the aim was finding optimal electrospinning parameters in order to obtain the smallest fiber diameter by using Taguchi's methodology. The nanofibers produced by electrospinning a solution of Thermoplastic Polyurethane (TPU) in Dimethylformamide (DMF). Polymer concentration and process parameters were considered as the effective factors. Taguchi's L9 orthogonal design (4 parameters, 3 levels) was applied to the experiential design. Optimal electrospinning conditions were determined using the signal-to-noise (S/N) ratio with Minitab 17 software. The morphology of the nanofibers was studied by a Scanning Electron Microscope (SEM). Thereafter, a tensile tester machine was used to assess mechanical properties of nanofibrous scaffolds. The analysis of DoE experiments showed that TPU concentration was the most significant parameter. An optimum combination to reach smallest diameters was yielded at 12 wt% polymer concentration, 16 kV of the supply voltage, 0.1 ml/h feed rate and 15 cm tip-to-distance. An empirical model was extracted and verified using confirmation test. The average diameter of nanofibers at the optimum conditions was in the range of 242.10 to 257.92 nm at a confidence level 95% which was in close agreement with the predicted value by the Taguchi technique. Also, the mechanical properties increased with decreasing fibers diameter. This study demonstrated Taguchi method was successfully applied to the optimization of electrospinning conditions for TPU nanofibers and the presented scaffold can mimic the structure of Extracellular Matrix (ECM).