• Title/Summary/Keyword: Nanocrystalline Silicon

Search Result 58, Processing Time 0.027 seconds

Study on the Luminescence of Si Nanocrystallites on Si Substrate fabricated by Changing the Wavelength of Pulsed Laser Deposition (펄스레이저 증착법의 레이저 파장변환에 의한 실리콘 나노결정의 발광 특성 연구)

  • 김종훈;전경아;최진백;이상렬
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.4
    • /
    • pp.169-172
    • /
    • 2003
  • Silicon nanocrystalline thin films on p-type (100) silicon substrate have been fabricated by pulsed laser deposition technique using a Nd:YAG laser with the wavelength of 355, 532, and 1064 nm. The base vacuum in the chamber was down to $10^-6$ Torr and the laser energy densities were 1.0~3.0 J/$\textrm{cm}^2$ After deposition, silicon nanocrystalline thin films have been annealed at nitrogen gas. Strong Blue and green luminescence from silicon nanocrystalline thin films have been observed at room temperature by photoluminescence and its peak energies shift to green when the wavelength is increased from 355 to 1064 nm.

The Effects of Nanocrystalline Silicon Thin Film Thickness on Top Gate Nanocrystalline Silicon Thin Film Transistor Fabricated at 180℃

  • Kang, Dong-Won;Park, Joong-Hyun;Han, Sang-Myeon;Han, Min-Koo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.111-114
    • /
    • 2008
  • We studied the influence of nanocrystalline silicon (nc-Si) thin film thickness on top gate nc-Si thin film transistor (TFT) fabricated at $180^{\circ}C$. The nc-Si thickness affects the characteristics of nc-Si TFT due to the nc-Si growth similar to a columnar. As the thickness of nc-Si increases from 40 nm to 200 nm, the grain size was increased from 20 nm to 40 nm. Having a large grain size, the thick nc-Si TFT surpasses the thin nc-Si TFT in terms of electrical characteristics such as field effect mobility. The channel resistance was decreased due to growth of the grain. We obtained the experimental results that the field effect mobility of the fabricated devices of which nc-Si thickness is 60, 90 and 130 nm are 26, 77 and $119\;cm^2/Vsec$, respectively. The leakage current, however, is increased from $7.2{\times}10^{-10}$ to $1.9{\times}10^{-8}\;A$ at $V_{GS}=-4.4\;V$ when the nc-Si thickness increases. It is originated from the decrease of the channel resistance.

Variation of the Nanostructural and Optical Features of Porous Silicon with pH Conditions (pH 조건에 따른 기공성 실리콘의 나노구조 및 광학적 특성의 변화)

  • Kim, Hyo-Han;Cho, Nam-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.4
    • /
    • pp.294-300
    • /
    • 2013
  • The effect of chemical treatments of porous silicon in organic solvents on its nanostructural and optical features was investigated. When the porous Si was dipped in the organic solvent with various PH values, the morphological, chemical, and structural properties of the porous silicon was sensitively affected by the chemical conditions of the solvents. The size of silicon nanocrystallites in the porous silicon decreased from 5.4 to 3.1 nm with increasing pH values from 1 to 14. After the samples were dipped in the organic solvents, the Si-O-H bonding intensity was increased while that of Si-H bonding decreased. Photoluminescence peaks shifted to a shorter wavelength region in the range of 583 to 735 nm as the pH value increased. PL intensity was affected by the size as well as the volume fraction of the nanocrystalline silicon in the porous silicon.

Residual stress on nanocrystalline silicon thin films deposited with substrate biasing at low temperature

  • Lee, Hyoung-Cheol;Kim, In-Kyo;Yeom, Geun-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1568-1570
    • /
    • 2009
  • Nanocrystalline silicon thin films were deposited using an internal-type inductively coupled plasma-chemical vapor deposition at room temperature by varying the bias power to the substrate and the structural characteristics of the deposited thin film were investigated. The result showed that the crystalline volume fraction was decreased with the increase of bias power. At the low bias power range of 0~60 W, the compress stress in the deposited thin film was in the range of -34 ~ -77 Mpa which is generally lower than the residual stress observed for the nanocrystalline silicon thin films deposited by capacitively coupled plasma.

  • PDF

ICPCVD를 이용하여 저온 증착된 나노 결정질 실리콘 기반 박막트랜지스터의 전기적 특성 향상을 위한 플라즈마 처리

  • Choe, U-Jin;Jang, Gyeong-Su;Baek, Gyeong-Hyeon;An, Si-Hyeon;Park, Cheol-Min;Jo, Jae-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.343-343
    • /
    • 2011
  • 저온에서의 Thin Film Transistor (TFT) 혹은 Nonvolatile memory (NVM) 등의 MOS 구조 소자들의 높은 전기적 특성에 관한 연구들이 진행 되면서 mobility와 stability 그리고 구조화의 용이성에 대한 연구가 진행됨에 따라 amorphous silicon의 결정화를 통해 전기적 특성을 향상 시킨 Nanocrystalline silicon (nc-Si)/Microcrystalline silicon (${\mu}c$-Si)에 대한 연구가 관심을 받고 있다. 본 논문에서는 ${\leq}300^{\circ}C$에서 Inductively coupled plasma chemical vapor deposition를 이용한 TFT을 제작하였다. 가스비, 온도, 두께에 따른 결정화 정도를 Raman spectra를 통해 확인한 후 Bottom gate와 Top gate 구조의 TFT를 제작 하고 결정화에 따른 전기적 특성 향상과 그의 덧붙여 플라즈마 처리를 통한 특성 향상을 확인 하였다.

  • PDF

Development of nanocrystalline silicon thin film transistors with low-leakage and high stability for AMOLED displays

  • Templier, Francois;Oudwan, Maher;Venin, Claude;Villette, Jerome;Elyaakoubi, Mustapha;Dimitriadis, C.A.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1705-1708
    • /
    • 2006
  • Nanocrystalline silicon (nc-Si) based TFTs were developed using a conventional PECVD production system. Devices exhibit very interesting characteristics, in particular when using a bi-layer structure which reduces leakage current and improves subthreshold area. Good stability and low leakage current make these devices suitable for the fabrication of low-cost and high performance AMOLED displays.

  • PDF

Optoelectronic Properties of Semiconductor-Atomic Superlattice Diode for SOI Applications (SOI 응용을 위한 반도체-원자 초격자 다이오드의 광전자 특성)

  • 서용진
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.83-88
    • /
    • 2003
  • The optoelectronic characteristics of semiconducto-atomic superlattice as a function of deposition temperature and annealing conditions have been studied. The nanocrystalline silicon/adsorbed oxygen superlattice formed by molecular beam epitaxy(MBE) system. As an experimental result, the superlattice with multilayer Si-O structure showed a stable photoluminescence(PL) and good insulating behavior with high breakdown voltage. This is very useful promise for Si-based optoelectronics and quantum devices as well as for the replacement of silicon-on-insulator (SOI) in ultra-high speed and lower power CMOS devices in the future, and it can be directly integrated with silicon ULSI processing.

  • PDF

Detection of Nitroaromatic Compounds with Functionalized Porous Silicon Using Quenching Photoluminescence

  • Cho, Sungdong
    • Journal of Integrative Natural Science
    • /
    • v.3 no.4
    • /
    • pp.202-205
    • /
    • 2010
  • Nanocrystalline porous silicon surfaces have been used to detect nitroaromatic compounds in vapor phase. The mode of photoluminescence is emphasized as a sensing attitude or detection technique. Quenching of photoluminescence from nanocrystalline porous surfaces as a transduction mode is measured upon the exposure of nitroaromatic compounds. Reversible detection mode for nitroaromatics is, too, observed. To verify the detection afore-mentioned, photoluminescent freshly prepared porous silicons are functionalized with different groups. The mechanism of quenching of photoluminescence is attributed to the electron transfer behaviors of quantum-sized nano-crystallites in the porous silicon matrix to the analytes(nitroaromatics). An attempt has been done to prove that the surface-derivatized photoluminescent porous silicone surfaces can act as versatile substrates for sensing behaviors due to having a large surface area and highly sensitive transduction mode.

Fabrication and characteristics of photoluminescing Si prepared by spark process (Spark process법을 이용한 photoluminescence용 실리콘의 제조 및 특성)

  • 장성식;강동헌
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.3
    • /
    • pp.299-305
    • /
    • 1995
  • Visible photoluminescing (PL) silicon at room temperature has been prepared by a dry technique, that is, by spark processing, contrary to anodically etched porous silicon. PL peak maximum of photoluminescing spark processed Si was shifted to blue 520 nm. The stability of spark processed Si towards degradation upon UV radiation was found to be extremely high. Results from high resolution TEM, XRD and XPS studies suggest that spark processed silicon involves minute nanocrystalline (polycrystalline) particles which are imbedded in an amorphous matrix, preferably $SiO_2$.

  • PDF