• Title/Summary/Keyword: Nanocrystalline Fe

Search Result 209, Processing Time 0.019 seconds

Diffraction Characteristics of Mechanically Alloyed Nanocrystalline FeAl (기계적합금화한 FeAl 나노결정립의 회절특성)

  • Choi, Keun-Seob;Kim, Do-Hyang;Hong, Kyung-Tae
    • Applied Microscopy
    • /
    • v.27 no.4
    • /
    • pp.473-481
    • /
    • 1997
  • Disorder-order transformation of nanocrystalline FeAl have been investigated by a combination of electron and X-ray diffraction analysis including high resolution electron microscopy and differential scanning calorimetry. Fe-50at.%Al powders mechanically alloyed for 90 hours consist of $5\sim10$ nm size grains haying either disordered b.c.c. structure or amorphous structure. X-ray and electron diffraction of mechanically alloyed FeAl powders show that disorder-order transformation occurs at the temperature range of $300^{\circ}C\sim320^{\circ}C$. Such a low-temperature ordering behavior exhibiting an exothermic reaction is attributable to the nm-scale grain structure with a large amount of defects accumulated during mechanical alloying process.

  • PDF

EFFECT OF FLASH ANNEALING ON MAGNETIC PROPERTIES OF Fe-BASED NANOCRYSTALLINE ALLOYS

  • Yu, Xiaojun;Quan, Baiyun;Sun, Guiqin;Narita, Kenji
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.507-510
    • /
    • 1995
  • A heat-treatment method of pre-annealing and then flash annealing(FA) has been used to improve the soft magnetic properties of nanocrystalline $Fe_{76}CuSi_{13}B_{10}$ and $Fe_{74}CuNb_{3}Si_{12}B_{10}$ alloys. Outstanding magnetic properties of nanocrystalline $Fe_{74}CuNb_{3}Si_{12}B_{10}$ alloy were attained by flash-annealing in air after annealed at $500^{\circ}C$ for 0.5hr below the crystallization temperature. The same results were obtained for $Fe_{74}CuSi_{13}B_{10}$ alloy. The measurment of relief of stress and X-ray diffraction were used to analyze the effect of flashannealing.

  • PDF

Microstructure and Mgnetic Properties of Electrodeposited Nanocrystalline Low-Nickel Permalloy (전착법으로 제조한 나노결정질 저Ni 퍼멀로이의 미세 조직과 자기적 특성)

  • 허영두;이흥렬;황태진;임태홍
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.455-460
    • /
    • 2003
  • Microstructural and magnetic properties of nanocrystalline Fe-46 wt%Ni and Fe-36 wt%Ni alloys were investigated. Alloys were prepared by the electrodeposition process. The electrolytes were iron sulfate/nickel chloride-based and iron chloride/nickel sulfamate-based solutions. Fe-46 wt%Ni alloy was FCC structure with grain size of 10 nm, but FCC and BCC phases were found in Fe-36 wt%Ni alloy and its grain size was smaller. Effective permeability of Fe-36 wt%Ni alloy was higher than that of Fe-46 wt%Ni alloy in the high frequency range because of large electrical resistivity and small eddy current loss resulted from grain size decrease. Up to $300^{\circ}C$ of annealing temperature, grain growth of Fe-Ni alloys slowly occured. Conversely, annealing above $450^{\circ}C$ led to a drastic grain growth. In that case, effective permeability was decreased at the temperature lower than $300^{\circ}C$ but at $300^{\circ}C$ or higher effective permeability was increased. At the high frequency of 1 MHz, electrodeposited Fe-Ni alloys had higher effective permeability with an decrease in the grain size.

Partitioning of Si in Fe-Zr-Si-B Nanocrystalline Alloys

  • Waniewska, A.Slawska;Greneche, J.M.;A.Inoue
    • Journal of Magnetics
    • /
    • v.4 no.1
    • /
    • pp.1-4
    • /
    • 1999
  • The microstructure and magnetic properties of$ Fe_{87}Zr_7Si_4B_2$ nanocrystalline alloys were studied by magnetization measurements and M ssbauer spectrometry over a wide temperature range. Three well resolved spectral components have been found and attributed to bcc-Fe grains (with almost pure iron structure), residual amorphous matrix enriched with solute elements and interfaces formed at the grain-matrix boundaries. It has been shown that, contrary to the expectation, during crystallization the atomic segregation occurs leading to the formation of primary bcc-Fe grains and the partition of Si atoms into the residual amorphous matrix.

  • PDF

Local Structure and Magnetic Properties of Fe-Mn Nanocrystalline Alloys Fabricated by Mechanical Alloying Technique as a Function of Milling Time

  • Tarigan, Kontan;Yang, Dong Seok;Yu, Seong Cho
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.1-4
    • /
    • 2013
  • Structural and magnetic properties of $Fe_{50}Mn_{50}$ nanocrystalline alloys prepared by the mechanical alloying technique (using commercial Fe and Mn powders as the precursors) are studied as a function of milling time, 1 hr to 48 hrs. The nano-crystallite size and shape are examined by using scanning electron microscopy (SEM). The effect of milling time on structural characterization was investigated using X-ray diffractometer (XRD) and extended X-ray absorption fine structure spectroscopy (EXAFS). Both XRD and EXAFS studies showed that the alloying process should be completed after 36 hrs milling. Concerning the magnetic behavior, the data obtained from superconducting quantum interference devices (SQUID) exhibited both magnetic saturation ($M_s$) and coercivity ($H_c$) depend strongly on the milling time, which are related to the changes in the crystallite size and magnetic dilution.

The Characteristic Changes of Electromagnetic Wave Absorption in Fe-based Nanocrystalline P/M Sheets Mixed with Ball-Milled Carbon Nanotubes (Fe계 나노결정립 분말 시트에 첨가된 CNT의 볼밀 공정에 따른 전자파 흡수 특성 변화)

  • Kim, Sun-I;Kim, Mi-Rae;Sohn, Keun-Yong;Park, Won-Wook
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.424-430
    • /
    • 2009
  • Electromagnetic wave energies are consumed in the form of thermal energy, which is mainly caused by magnetic loss, dielectric loss and conductive loss. In this study, CNT was added to the nanocrystalline soft magnetic materials inducing a high magnetic loss, in order to improve the dielectric loss of the EM wave absorption sheet. Generally, the aspect ratio and the dispersion state of CNT can be changed by the pre-ball milling process, which affects the absorbing properties. After the various ball-milling processes, 1wt% of CNTs were mixed with the nanocrystalline $Fe_{73}Si_{16}B_7Nb_{3}Cu_1$ base powder, and then further processed to make EM absorption sheets. As a result, the addition of CNT to Fe-based nanocrystalline materials improved the absorption properties. However, the increase of ball-milling time for more than 1h was not desirable for the powder mixture, because the ballmilling caused the shortening of CNT length and the agglomeration of the CNT flakes.

Soft Magnetic Property Analysis of Nanocrystalline Fe-Al-O Film with the Change of Microstructure (나노 결정립 Fe-Al-O 산화막의 미세구조 변화에 따른 연자기적 특성 분석)

  • Lee, Young-Woo;Park, Bum-Chan;Kim, Chong-Oh;Moon, Ji-Hyun;Choi, Yong-Dae
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.2
    • /
    • pp.59-64
    • /
    • 2004
  • We investigated the soft magnetic properties of nanocrystalline Fe-Al-O film as etching the oxide film with ion beam etching method. It is thought that the grain size of Fe-Al-O film increases as the thickness decreases. The coercivity and squareness increase with decreasing thickness. The surface curvature of Am images increases when the etching experiment proceeds. This phenomena could be due to the grain growth which occurs during sputtering. This grain growth could be assisted by the the plasma energy during sputtering. Therefore proper thickness should be searched to acquire the good soft magnetic properties for the nanocrystalline film material. Good soft magnetic properties of Fe-Al-O film was acquired at the thickness of more than 900 nm.

Magnetic Properties of $Nd_{12}Dy_2Fe_{73.2}Co_{6.6}Ga_{0.6}B_{5.6}$ magnets fabricated by current-applied pressure-assisted method

  • Kim, H. T.;S. H. Cho;Kim, Y. B.;G. A. Kapustin;Kim, H. S.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.232-233
    • /
    • 2002
  • Nanostructed high energy Nd-Fe-B based bulk magnet can be prepared by hot-working process (hot press and die-upset) from melt-spun amorphous or nanocrystalline powder.[1] Recently, we have investigated a modified method, current-applied pressure-assisted (CAPA) process, to produce nanocrystalline isotropic and anisotropic NdFeB magnets. The process consists of current-applied pressing the melt-spun powders to obtain isotropic precursor subsequent current-applied deforming the precursor to obtain textured magnet.[2-3] (omitted)

  • PDF

Improvement of Mechanical Properties of Nanocrystalline FeCrC Alloy via Strain-Induced Martensitic Transformation (소성유기마르텐사이트 변태에 의한 나노결정 FeCrC 소결합금의 기계적 강도 향상)

  • Kim, Gwanghun;Jeon, Junhyub;Seo, Namhyuk;Park, Jungbin;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.246-252
    • /
    • 2021
  • The effect of sintering conditions on the austenite stability and strain-induced martensitic transformation of nanocrystalline FeCrC alloy is investigated. Nanocrystalline FeCrC alloys are successfully fabricated by spark plasma sintering with an extremely short densification time to obtain the theoretical density value and prevent grain growth. The nanocrystallite size in the sintered alloys contributes to increased austenite stability. The phase fraction of the FeCrC sintered alloy before and after deformation according to the sintering holding time is measured using X-ray diffraction and electron backscatter diffraction analysis. During compressive deformation, the volume fraction of strain-induced martensite resulting from austenite decomposition is increased. The transformation kinetics of the strain-induced martensite is evaluated using an empirical equation considering the austenite stability factor. The hardness of the S0W and S10W samples increase to 62.4-67.5 and 58.9-63.4 HRC before and after deformation. The hardness results confirmed that the mechanical properties are improved owing to the effects of grain refinement and strain-induced martensitic transformation in the nanocrystalline FeCrC alloy.