DOI QR코드

DOI QR Code

The Characteristic Changes of Electromagnetic Wave Absorption in Fe-based Nanocrystalline P/M Sheets Mixed with Ball-Milled Carbon Nanotubes

Fe계 나노결정립 분말 시트에 첨가된 CNT의 볼밀 공정에 따른 전자파 흡수 특성 변화

  • Kim, Sun-I (Department of Nano System Engineering, Inje University) ;
  • Kim, Mi-Rae (Department of Nano System Engineering, Inje University) ;
  • Sohn, Keun-Yong (Department of Nano System Engineering, Inje University) ;
  • Park, Won-Wook (Department of Nano System Engineering, Inje University)
  • 김선이 (인제대학교 나노시스템 공학과) ;
  • 김미래 (인제대학교 나노시스템 공학과) ;
  • 손근용 (인제대학교 나노시스템 공학과) ;
  • 박원욱 (인제대학교 나노시스템 공학과)
  • Published : 2009.12.28

Abstract

Electromagnetic wave energies are consumed in the form of thermal energy, which is mainly caused by magnetic loss, dielectric loss and conductive loss. In this study, CNT was added to the nanocrystalline soft magnetic materials inducing a high magnetic loss, in order to improve the dielectric loss of the EM wave absorption sheet. Generally, the aspect ratio and the dispersion state of CNT can be changed by the pre-ball milling process, which affects the absorbing properties. After the various ball-milling processes, 1wt% of CNTs were mixed with the nanocrystalline $Fe_{73}Si_{16}B_7Nb_{3}Cu_1$ base powder, and then further processed to make EM absorption sheets. As a result, the addition of CNT to Fe-based nanocrystalline materials improved the absorption properties. However, the increase of ball-milling time for more than 1h was not desirable for the powder mixture, because the ballmilling caused the shortening of CNT length and the agglomeration of the CNT flakes.

Keywords

References

  1. J. R. Liu, M. Itoh, T. Horikawa, M. Itakura, N. Kuwano and K. Machida: J. Appl. Phys., 37 (2004) 2737 https://doi.org/10.1088/0022-3727/37/19/019
  2. S. S. Kim, S. B. Jo, K. I. Gueon, K. K. Choi, J. M. Kim and K. S. Churn: IEEE Tans. Magn., 27 (1991) 5462 https://doi.org/10.1109/20.278872
  3. J. R. Liu, M. Itoh, K. Machida: Appl. Phys. Lett., 88 (2006) 062503 https://doi.org/10.1063/1.2170402
  4. J. H. Choi, D. I. Kim, J. M. Song and J. H. Jung: Journal of The Korean Electromagnetic Engineering Society, 16 (2005) 842
  5. S. Yoshida, M. Sato, E. Sugawara and Y. Shimada: J. Appl. Phys., 85 (1999) 4636 https://doi.org/10.1063/1.370432
  6. T. Nakamura: J. Appl. Phys., 88 (2000) 348 https://doi.org/10.1063/1.373666
  7. Y. Yoshizawa and K. Yamauchi: IEEE Trans. Magn., 25 (1989) 3324 https://doi.org/10.1109/20.42291
  8. G. Herzer: IEEE Trans. Magn., 25 (1989) 3327 https://doi.org/10.1109/20.42292
  9. B. Hornbostel, U. Leute, P. Potschke, J. Kotz, D. Kornfeld, P. W. Chiu and S. Roth: Physica E, 40 (2008) 2425 https://doi.org/10.1016/j.physe.2007.10.078
  10. N. Darsono, D. H. Yoon and J. Kim: Appl. Surf. Sci., 254 (2008) 3412 https://doi.org/10.1016/j.apsusc.2007.11.028
  11. J. I. Lee and H. T. Jung: Korean CHem. Eng.Res., 46 (2008) 7
  12. D. D. L. Chung: Carbon, 39 (2001) 279 https://doi.org/10.1016/S0008-6223(00)00184-6
  13. A. Esawi and K. Morsi: Composites: part A, 38 (2007) 646 https://doi.org/10.1016/j.compositesa.2006.04.006
  14. S. I. Kim, M. R. Kim, K. Y. Sohn and W. W. Park: Journal of Korean Powder Metallurgy Institute, 16 (2009) 291 https://doi.org/10.4150/KPMI.2009.16.4.291
  15. Z. Tao, H. Geng, K. Yu, Z. Yang and Y. Wang: Mater. Lett., 58 (2004) 3410 https://doi.org/10.1016/j.matlet.2004.05.045