• Title/Summary/Keyword: Nanocrystal

Search Result 181, Processing Time 0.024 seconds

Synthesis of the Water Dispersible L-Valine Capped ZnS:Mn Nanocrystal and the Crystal Structure of the Precursor Complex: [Zn(Val)2(H2O)]

  • Hwang, Cheong-Soo;Lee, Na-Rae;Kim, Young-Ah;Park, Youn-Bong
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1809-1814
    • /
    • 2006
  • The L-Valinate anion coordinating zinc complex, [$Zn(val)_2(H-2O)$], was isolated and structurally characterized by single crystal X-ray crystallography. The crystal possess orthorhombic symmetry with a space group $P2_12_12_1$, Z = 4, and a = 7.4279(2)$\AA$, b = 9.4342(2)$\AA$, c =20.5862(7)$\AA$ respectively. The compound features a penta-coordinate zinc ion in which the two valine anion molecules are directly coordinating the central zinc metal ion via their N (amine) and O (carboxylate) atoms, and an additional coordination to zinc is made by water molecule (solvent) to form a distorted square pyramidal structure. In addition, further synthesis of the valine capped ZnS:Mn nanocrystal from the reaction of [$Zn(val)_2(H-2O)$] precursor with $Na_2S$ and 1.95 weight % of $Mn^{2+}$ dopant is described. Obtained valine capped nanocrystal was water dispersible and was optically characterized by UV-vis and solution PL spectroscopy. The solution PL spectrum for the valine capped ZnS:Mn nanocrystal showed an excitation peak at 280 nm and a very narrow emission peak at 558 nm respectively. The measured and calculated PL efficiency of the nanocrystal in water was 15.8%. The obtained powders were characterized by XRD, HR-TEM, and EDXS analyses. The particle size of the nanocrystal was also measured via a TEM image. The measured average particle size was 3.3 nm.

Effects of Electroplating Current Density and Duty Cycle on Nanocrystal Size and Film Hardness

  • Sun, Yong-Bin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.1
    • /
    • pp.67-71
    • /
    • 2015
  • Pulse electroplating was studied to form nanocrystal structure effectively by changing plating current density and duty cycle. When both of plating current density and duty cycle were decreased from $100mA/cm^2$ and 70% to $50mA/cm^2$ and 30%, the P content in the Ni matrix was increased almost up to the composition of $Ni_3P$ compound and the grain growth after annealing was retarded as well. The as-plated hardness values ranging from 660 to 753 HV are mainly based on the formation of nanocrystal structure. On the other hand, the post-anneal hardness values ranging from 898 to 1045 HV, which are comparable to the hardness of hard Cr, are coming from how competition worked between the precipitation of $Ni_3P$ and the grain coarsening. According to the ANOVA and regression analysis, the plating current density showed more strong effect on nanocrystal size and film hardness than the duty cycle.

Effects of hydration structure on the femtosecond white light-induced phase transition to crystalline silicon nanocrystal having ultrabright narrowed luminescence

  • Choi, Kyong-Hoon;Wang, Kang-Kyun;Ha, Jeong-Hyon;Kim, Yong-Rok
    • Rapid Communication in Photoscience
    • /
    • v.4 no.3
    • /
    • pp.54-58
    • /
    • 2015
  • Under the condition of femtosecond impulsive nonlinear optical irradiation, the bright and narrowed blue emission of silicon nanocrystal was observed. This synthetic method produced very small (~ 4 nm) oxide-capped silicon nanocrystal having probably ultra small emitting core (~ 1 nm) inferred from luminescence. By controlling the stirring condition, very high efficiencies of luminescence ( 4 fold higher) were obtained compared with the other conventional femtosecond laser fragmentation methods, which was attributed to the differences in hydration shell structure during the femtosecond laser induced irreversible phase transition reaction. When we properly adjusted the irradiation times of the white light continuum and stirring condition, very homogeneous luminescent silicon nanocrystal bands having relatively sharp lineshape were obtained, which can be attributable to the luminescent core site isolated and free from the surface defects.

Synthesis of InP Nanocrystal Quantum Dots Using P(SiMe2tbu)3

  • Jeong, So-Myeong;Kim, Yeong-Jo;Jeong, So-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.533-534
    • /
    • 2012
  • Colloidal III-V semiconductor nanocrystal quantum dots (NQDs) have attracted attention as they can be applied in various areas such as LED, solar cell, biological imaging, and so on because they have decreased ionic lattices, lager exciton diameter, and reduced toxicity compared with II-VI compounds. However, the study and application of III-V semiconductor nanocrystals is limited by difficulties in control nucleation because the molecular bonds in III-V semiconductors are highly covalent compared to II-VI compounds. There is a need for a method that provides rapid and scalable production of highly quality nanoparticles. We present a new synthetic scheme for the preparation of InP nanocrystal quantum dots using new phosphorus precursor, P(SiMe2tbu)3. InP nanocrystals from 530nm to 600nm have been synthesized via the reaction of In(Ac)3 and new phosphorus precursor in noncoordinating solvent, ODE. This opens the way for the large-scale production of high quality Cd-free nanocrystal quantum dots.

  • PDF

Shape Control of Gold Nanocrystal: Synthesis of Faceted Gold Nanoparticles and Construction of Morphology Diagram

  • Ahn, Hyo-Yong;Lee, Hye-Eun;Nam, Ki Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.281.1-281.1
    • /
    • 2013
  • Shape control of gold nanocrystal is still one of the most important challenges remaining to achieve geometry dependent properties. Thus far, several strategies have been developed to control the shape of nanoparticles, such as adding capping agents and diverse additives or adjusting the temperature and pH. Here, we used an already established seed-mediated method that allowed us to focus on controlling the growth stage. Cetyltrimethylammonium bromide (CTAB) and ascorbic acid (AA) were used as the ligand and the reducing agent, respectively, without using any additional additives during the growth stage. We investigated how the relative ratio of CTAB and AA concentrations could be a major determinant of nanoparticle shape over a wide concentration range of CTAB and AA. As a result, a morphology diagram was constructed experimentally that covered the growth conditions of rods, cuboctahedra, cubes, and rhombic dodecahedra. The trends in the morphology diagram emphasize the importance of the interplay between CTAB and AA. Furthermore, high-index faceted gold nanocrystal was obtained by two step seeded growth. Already synthesized cubic particles developed into hexoctahedral nanocrystal consisting of 48 identical {321} facets, which indicates that the growth of gold nanocrystal is affected by initial morphology of seed particles. The hexoctahedral gold nanoparticles can be used in catalysis and optical applications which exploiting their unique geometry. Our research can provide useful guidelines for designing various facetted geometries.

  • PDF

Designing a nanocrystal-based temperature and strain multi-sensor with one-step inkjet printing

  • Bang, Junsung;Ahn, Junhyuk;Oh, Soong Ju
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.218-222
    • /
    • 2021
  • Wearable multi-sensors based on nanocrystals have attracted significant attention, and studies on patterning technology to implement such multi-sensors are underway. Conventional patterning processes may affect material properties based on high temperatures and harsh chemical conditions. In this study, we developed an inkjet printing technique that can overcome these drawbacks through the application of patterning processes at room temperature and atmospheric pressure. Nanocrystal-based ink is used to adjust properties efficiently. Additionally, the viscosity and surface tension of the solvents are investigated and optimized to increase patterning performance. In the patterning process, the electrical, electrothermal, and electromechanical properties of the nanocrystal pattern are controlled by the ligand exchange process. Experimental results demonstrate that a multi-sensor with a temperature coefficient of resistance of 3.82 × 10-3 K-1 and gauge factor of 30.6 can be successfully fabricated using one-step inkjet printing.