Browse > Article
http://dx.doi.org/10.5857/RCP.2015.4.3.54

Effects of hydration structure on the femtosecond white light-induced phase transition to crystalline silicon nanocrystal having ultrabright narrowed luminescence  

Choi, Kyong-Hoon (Plasma Bioscience Research Center, Kwangwoon University)
Wang, Kang-Kyun (Photon Applied Functional Molecule Research Laboratory, Department of Chemistry, Yonsei University)
Ha, Jeong-Hyon (Space-Time Resolved Molecular Imaging Research Team, Korea Basic Science Institute)
Kim, Yong-Rok (Photon Applied Functional Molecule Research Laboratory, Department of Chemistry, Yonsei University)
Publication Information
Rapid Communication in Photoscience / v.4, no.3, 2015 , pp. 54-58 More about this Journal
Abstract
Under the condition of femtosecond impulsive nonlinear optical irradiation, the bright and narrowed blue emission of silicon nanocrystal was observed. This synthetic method produced very small (~ 4 nm) oxide-capped silicon nanocrystal having probably ultra small emitting core (~ 1 nm) inferred from luminescence. By controlling the stirring condition, very high efficiencies of luminescence ( 4 fold higher) were obtained compared with the other conventional femtosecond laser fragmentation methods, which was attributed to the differences in hydration shell structure during the femtosecond laser induced irreversible phase transition reaction. When we properly adjusted the irradiation times of the white light continuum and stirring condition, very homogeneous luminescent silicon nanocrystal bands having relatively sharp lineshape were obtained, which can be attributable to the luminescent core site isolated and free from the surface defects.
Keywords
Femtosecond laser ablation and fragmentation; Femtosecond laser irradiation time effect; Silicon nanocrystal phase transition; Hydration effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Huisken, F.; Ledoux, G.; Guillois, O.; Reynaud, C. Adv. Mater. 2002, 14, 1861-1865.   DOI   ScienceOn
2 Fiory, A. T.; Ravindra, N. M. J. Electron. Mater. 2003, 32, 1043-1051.   DOI
3 Sato, S.; Swihart, M. Chem. Mater. 2006, 18, 4083-4088.   DOI   ScienceOn
4 Kusova, K.; Cibulka, O.; Dohnalova, K.; Pelant, I.; Valenta, J.; Fucikova, A.; Zidek, K.; Lang, J.; Englich, J.; Matejka, P.; Stepanek, P.; Bakardjieva, S. ACS Nano 2010, 4, 4495-4504.   DOI   ScienceOn
5 Kumar, V. Nanosilicon, 2007, Elsevier, London.
6 Dementyev, A. E.; Cory, D. G.; Ramanathan, C. Phys. Rev. Lett. 2008, 100, 127601:1-4.
7 Kim, K. - H.; Johnson, E. V.; Cabarrocas, P. R. i Sol. Energ. Mat. Sol. Cells 2012, 105, 208-212.   DOI
8 Kim, K. H.; Johnson, E. V.; Abramov, A.; Cabarrocas, P. R. i Eur. Phys. J. Photovolt. 2012, 3, 30301: 1-14.
9 Zdetsis, A. D. Phys. Rev. B, 2009, 79, 195437:1-8.
10 Belomoin, G.; Therrien, J.; Smith, A.; Rao, S.; Twesten, R.; Chaieb, S.; Nayfeh, M. H.; Wagner, L.; Mitas, L. Appl. Phys. Lett. 2002, 80, 841-843.   DOI   ScienceOn
11 Umezu, I.; Minami, H.; Senoo, H.; Sugimura, A. J. Phys.: Conf. Ser. 2007, 59, 392-395.   DOI
12 Warner, J. H.; Rubinsztein-Dunlop, H.; Tilley, R. D. J. Phys. Chem. B 2005, 109, 19064-19067.   DOI
13 Svrcek, V.; Sasaki, T.; Shimizu, Y.; Koshizaki, N. J. Appl. Phys. 2008, 103, 023101:1-8.
14 Holmes, J. D.; Ziegler, K. J.; Doty, R. C.; Pell, L. E.; Johnston, K. P.; Korgel, B. A. J. Am. Chem. Soc. 2001, 123, 3743-3748.   DOI   ScienceOn
15 Li, Z. F.; Ruckenstein, E. Nano Lett. 2004, 4, 1463-1467.   DOI   ScienceOn
16 Fujii, M.; Kovalev, D.; Goller, B.; Minobe, S.; Hayashi, S.; Timoshenko, V. Y. Phys. Rev. B 2005, 72, 165321:1-8.
17 Zatryb, G.; Podhorodecki, A.; Misiewicz, J.; Cardin, J.; Gourbilleau, F. Nanoscale Res. Lett. 2011, 6, 106:1-8.
18 Godefroo, S.; Hayne, M.; Jivanescu, M.; Stesmans, A.; Zacharias, M.; Lebedev, O. I.; Tendeloo, G. Van.; Moshchalkov, V. V. Nature Nanotech. 2008, 3, 174-178.   DOI   ScienceOn
19 Anthony, R.; Kortshagen, U. Phys. Rev. B 2009, 80, 115407:1-6.
20 Heitmann, J.; Muller, F.; Yi, L.; Zacharias, M.; Kovalev, D.; Eich horn, F. Phys. Rev. B 2004, 69, 195309:1-7.
21 Sun, Q.; Wang, Q.; Kawazoe, Y.; Jena, P. Phys. Rev. B 2002, 66, 245425:1-6.
22 Svrcek, V.; Sasaki, T.; Shimizu, Y.; Koshizaki, N. Appl. Phys. Lett. 2006, 89, 213113:1-3.
23 Orii, T.; Hirasawa, M.; Seto, T. Appl. Phys. Lett. 2003, 83, 3395-3397.   DOI   ScienceOn
24 Besner, S.; Kabashin, A. V.; Winnik, F. M.; Meunier, M. Appl. Phys. A 2008, 93, 955-959.   DOI
25 Kuzmin, P. G.; Shafeev, G. A.; Bukin, V. V.; Garnov, S. V.; Farcau, C.; Carles, R.; Warot-Fontrose, B.; Guieu, V.; Viau, G. J. Phys. Chem. C 2010, 114, 15266-15273.   DOI   ScienceOn
26 Guerra, R.; Ossicini, S. Phys. Rev. B 2010, 81, 245307:1-6.
27 Besner, S.; Kabashin, A. V.; Meunier, M. Appl. Phys. Lett. 2006, 89, 233122:1-3.
28 Rioux, D.; Laferriere, M.; Douplik, A.; Shah, D.; Lilge, L.; Kabas hin, A. V.; Meunier, M. M. J. Biomed. Opt. 2009, 14, 021010:1-5.
29 Eliezer, S.; Eliaz, N.; Grossman, E.; Fisher, D.; Gouzman, I.; Henis, Z.; Pecker, S.; Horovitz, Y.; Fraenkel, M.; Maman, S.; Lereah, Y. Phys. Rev. B 2004, 69, 144119:1-6.
30 Shirahata, N. Phys. Chem. Chem. Phys 2011, 13, 7284-7294.   DOI   ScienceOn
31 Smith, A.; Yamani, Z. H.; Roberts, N.; Turner, J.; Habbal, S. R.; Granick, S.; Nayfeh, M. H. Phys. Rev. B 2005, 72, 205307:1-5.
32 Weissker, H.-Ch.; Furthmuller, J.; Bechstedt, F. Phys. Rev. B 2002, 65, 155328:1-7.
33 Govorkov, S. V.; Emel'yanov, V. I.; Koroteev, N. I.; Shumay, I. L. J. Lumin. 1992, 53, 153-158.   DOI   ScienceOn
34 Fausti, D.; Misochko, O. V.; Loosdrecht, P. H. M. van Phys. Rev B 2009, 80, 161207:1-4.
35 Collet, E.; Lemee, M. H.; Buron, M.; Cailleau, H.; Wulff, M.; Luty, T.; Koshihara, S.; Meyer, M.; Toupet, L.; Rabiller, P.; Techert, S. Science 2003, 300, 612-615.   DOI   ScienceOn
36 Mazurenko, D. A.; Nugroho, A. A.; Palstra, T. T. M.; Loosdrecht, P. H. M. van Phys. Rev. Lett. 2008, 101, 245702:1-4.
37 Nozik, A. J. Annu. Rev. Phys. Chem. 2001, 52, 193-231.   DOI   ScienceOn
38 Zhang, H.; Gilbert, B.; Huang, F.; Banfield, J. F. Nature 2003, 424, 1025-1029.   DOI   ScienceOn