DOI QR코드

DOI QR Code

Effects of hydration structure on the femtosecond white light-induced phase transition to crystalline silicon nanocrystal having ultrabright narrowed luminescence

  • Choi, Kyong-Hoon (Plasma Bioscience Research Center, Kwangwoon University) ;
  • Wang, Kang-Kyun (Photon Applied Functional Molecule Research Laboratory, Department of Chemistry, Yonsei University) ;
  • Ha, Jeong-Hyon (Space-Time Resolved Molecular Imaging Research Team, Korea Basic Science Institute) ;
  • Kim, Yong-Rok (Photon Applied Functional Molecule Research Laboratory, Department of Chemistry, Yonsei University)
  • 투고 : 2015.07.02
  • 심사 : 2015.09.08
  • 발행 : 2015.09.30

초록

Under the condition of femtosecond impulsive nonlinear optical irradiation, the bright and narrowed blue emission of silicon nanocrystal was observed. This synthetic method produced very small (~ 4 nm) oxide-capped silicon nanocrystal having probably ultra small emitting core (~ 1 nm) inferred from luminescence. By controlling the stirring condition, very high efficiencies of luminescence ( 4 fold higher) were obtained compared with the other conventional femtosecond laser fragmentation methods, which was attributed to the differences in hydration shell structure during the femtosecond laser induced irreversible phase transition reaction. When we properly adjusted the irradiation times of the white light continuum and stirring condition, very homogeneous luminescent silicon nanocrystal bands having relatively sharp lineshape were obtained, which can be attributable to the luminescent core site isolated and free from the surface defects.

키워드

참고문헌

  1. Huisken, F.; Ledoux, G.; Guillois, O.; Reynaud, C. Adv. Mater. 2002, 14, 1861-1865. https://doi.org/10.1002/adma.200290021
  2. Fiory, A. T.; Ravindra, N. M. J. Electron. Mater. 2003, 32, 1043-1051. https://doi.org/10.1007/s11664-003-0087-1
  3. Sato, S.; Swihart, M. Chem. Mater. 2006, 18, 4083-4088. https://doi.org/10.1021/cm060750t
  4. Kusova, K.; Cibulka, O.; Dohnalova, K.; Pelant, I.; Valenta, J.; Fucikova, A.; Zidek, K.; Lang, J.; Englich, J.; Matejka, P.; Stepanek, P.; Bakardjieva, S. ACS Nano 2010, 4, 4495-4504. https://doi.org/10.1021/nn1005182
  5. Kumar, V. Nanosilicon, 2007, Elsevier, London.
  6. Dementyev, A. E.; Cory, D. G.; Ramanathan, C. Phys. Rev. Lett. 2008, 100, 127601:1-4.
  7. Kim, K. - H.; Johnson, E. V.; Cabarrocas, P. R. i Sol. Energ. Mat. Sol. Cells 2012, 105, 208-212. https://doi.org/10.1016/j.solmat.2012.06.026
  8. Kim, K. H.; Johnson, E. V.; Abramov, A.; Cabarrocas, P. R. i Eur. Phys. J. Photovolt. 2012, 3, 30301: 1-14.
  9. Zdetsis, A. D. Phys. Rev. B, 2009, 79, 195437:1-8.
  10. Belomoin, G.; Therrien, J.; Smith, A.; Rao, S.; Twesten, R.; Chaieb, S.; Nayfeh, M. H.; Wagner, L.; Mitas, L. Appl. Phys. Lett. 2002, 80, 841-843. https://doi.org/10.1063/1.1435802
  11. Umezu, I.; Minami, H.; Senoo, H.; Sugimura, A. J. Phys.: Conf. Ser. 2007, 59, 392-395. https://doi.org/10.1088/1742-6596/59/1/083
  12. Warner, J. H.; Rubinsztein-Dunlop, H.; Tilley, R. D. J. Phys. Chem. B 2005, 109, 19064-19067. https://doi.org/10.1021/jp054565z
  13. Svrcek, V.; Sasaki, T.; Shimizu, Y.; Koshizaki, N. J. Appl. Phys. 2008, 103, 023101:1-8.
  14. Holmes, J. D.; Ziegler, K. J.; Doty, R. C.; Pell, L. E.; Johnston, K. P.; Korgel, B. A. J. Am. Chem. Soc. 2001, 123, 3743-3748. https://doi.org/10.1021/ja002956f
  15. Li, Z. F.; Ruckenstein, E. Nano Lett. 2004, 4, 1463-1467. https://doi.org/10.1021/nl0492436
  16. Fujii, M.; Kovalev, D.; Goller, B.; Minobe, S.; Hayashi, S.; Timoshenko, V. Y. Phys. Rev. B 2005, 72, 165321:1-8.
  17. Zatryb, G.; Podhorodecki, A.; Misiewicz, J.; Cardin, J.; Gourbilleau, F. Nanoscale Res. Lett. 2011, 6, 106:1-8.
  18. Godefroo, S.; Hayne, M.; Jivanescu, M.; Stesmans, A.; Zacharias, M.; Lebedev, O. I.; Tendeloo, G. Van.; Moshchalkov, V. V. Nature Nanotech. 2008, 3, 174-178. https://doi.org/10.1038/nnano.2008.7
  19. Anthony, R.; Kortshagen, U. Phys. Rev. B 2009, 80, 115407:1-6.
  20. Heitmann, J.; Muller, F.; Yi, L.; Zacharias, M.; Kovalev, D.; Eich horn, F. Phys. Rev. B 2004, 69, 195309:1-7.
  21. Sun, Q.; Wang, Q.; Kawazoe, Y.; Jena, P. Phys. Rev. B 2002, 66, 245425:1-6.
  22. Svrcek, V.; Sasaki, T.; Shimizu, Y.; Koshizaki, N. Appl. Phys. Lett. 2006, 89, 213113:1-3.
  23. Orii, T.; Hirasawa, M.; Seto, T. Appl. Phys. Lett. 2003, 83, 3395-3397. https://doi.org/10.1063/1.1621457
  24. Besner, S.; Kabashin, A. V.; Winnik, F. M.; Meunier, M. Appl. Phys. A 2008, 93, 955-959. https://doi.org/10.1007/s00339-008-4773-y
  25. Kuzmin, P. G.; Shafeev, G. A.; Bukin, V. V.; Garnov, S. V.; Farcau, C.; Carles, R.; Warot-Fontrose, B.; Guieu, V.; Viau, G. J. Phys. Chem. C 2010, 114, 15266-15273. https://doi.org/10.1021/jp102174y
  26. Besner, S.; Kabashin, A. V.; Meunier, M. Appl. Phys. Lett. 2006, 89, 233122:1-3.
  27. Rioux, D.; Laferriere, M.; Douplik, A.; Shah, D.; Lilge, L.; Kabas hin, A. V.; Meunier, M. M. J. Biomed. Opt. 2009, 14, 021010:1-5.
  28. Eliezer, S.; Eliaz, N.; Grossman, E.; Fisher, D.; Gouzman, I.; Henis, Z.; Pecker, S.; Horovitz, Y.; Fraenkel, M.; Maman, S.; Lereah, Y. Phys. Rev. B 2004, 69, 144119:1-6.
  29. Guerra, R.; Ossicini, S. Phys. Rev. B 2010, 81, 245307:1-6.
  30. Shirahata, N. Phys. Chem. Chem. Phys 2011, 13, 7284-7294. https://doi.org/10.1039/c0cp02647f
  31. Smith, A.; Yamani, Z. H.; Roberts, N.; Turner, J.; Habbal, S. R.; Granick, S.; Nayfeh, M. H. Phys. Rev. B 2005, 72, 205307:1-5.
  32. Weissker, H.-Ch.; Furthmuller, J.; Bechstedt, F. Phys. Rev. B 2002, 65, 155328:1-7.
  33. Govorkov, S. V.; Emel'yanov, V. I.; Koroteev, N. I.; Shumay, I. L. J. Lumin. 1992, 53, 153-158. https://doi.org/10.1016/0022-2313(92)90128-V
  34. Fausti, D.; Misochko, O. V.; Loosdrecht, P. H. M. van Phys. Rev B 2009, 80, 161207:1-4.
  35. Collet, E.; Lemee, M. H.; Buron, M.; Cailleau, H.; Wulff, M.; Luty, T.; Koshihara, S.; Meyer, M.; Toupet, L.; Rabiller, P.; Techert, S. Science 2003, 300, 612-615. https://doi.org/10.1126/science.1082001
  36. Mazurenko, D. A.; Nugroho, A. A.; Palstra, T. T. M.; Loosdrecht, P. H. M. van Phys. Rev. Lett. 2008, 101, 245702:1-4.
  37. Nozik, A. J. Annu. Rev. Phys. Chem. 2001, 52, 193-231. https://doi.org/10.1146/annurev.physchem.52.1.193
  38. Zhang, H.; Gilbert, B.; Huang, F.; Banfield, J. F. Nature 2003, 424, 1025-1029. https://doi.org/10.1038/nature01845