• Title/Summary/Keyword: Nanocomposite films

Search Result 161, Processing Time 0.036 seconds

The effect of metal composition on the structure and properties of Ti-Cu-N superhard nanocomposite coatings

  • Myung, Hyun S.;Lee, Hyuk M.;Han, Jeon G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.429-434
    • /
    • 2001
  • Ti-Cu-N nanocomposite films deposited by arc ion plating and magnetron sputter hybrid system with various copper contents. The microstructure and mechanical properties of Ti-Cu-N superhard nanocomposite films depend on the Cu concentration. In X-ray diffraction (XRD) analysis, intensity of TiN (111) and TiN (220) peak decreased and peak broadness increased with increasing the copper contents and Cu peak was not detected. The grain size of films decreased with increasing at%Cu and Transmission Electron Microscopy (TEM) analysis also showed that Ti-Cu-N film containing 1.5at%Cu was composed of very fine (<10nm) nanocrystalline grains. The maximum hardness of Ti-Cu-N (1.5at%Cu) film reached to 45GPa and friction coefficient was measured 0.3.

  • PDF

Mechanical and Water Barrier Properties of Soy Protein and Clay Mineral Composite Films

  • Rhim, Jong-Whan;Lee, Jun-Ho;Kwak, Hyo-Sup
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.112-116
    • /
    • 2005
  • Composite films were prepared with soy protein isolate (SPI) and various clay minerals by casting from polymer and clay water suspension. Effects of clay minerals on film thickness, moisture content (MC), tensile strength (TS), elongation at break (E), water vapor permeability (WVP), and water solubility (WS) were tested. Properties including thickness, surface smoothness, and homogeneity of films prepared with organically modified montmorillonite (O-MMT), Wamok clay (W-clay), bentonite, talc powder, and zeolite were comparable to those of control SPI films. TS increased significantly (p<0.05) in films prepared with O-MMT and bentonite, while WVP decreased significantly (p<0.05) in bentonite-added films. WS of most nanocomposite films decreased significantly (p<0.05).

Synthesis and Characterization of Nanocomposite Films Consisting of Vanadium Oxide and Microphase-separated Graft Copolymer

  • Choi, Jin-Kyu;Kim, Yong-Woo;Koh, Joo-Hwan;Kim, Jong-Hak;Mayes, Anne M.
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.553-559
    • /
    • 2007
  • Nanocomposite films were prepared by sol-gel synthesis from vanadium triisopropoxide with $poly((oxyethylene)_9$ methacrylate)-graft-poly(dimethyl siloxane), POEM-g-PDMS, producing in situ growth of vanadium oxide within the continuous ion-conducting POEM domains of micro phase-separated graft copolymer. The formation of vanadium oxide was confirmed by wide angle x-ray scattering (WAXS) and Fourier transform infrared (FT-IR) spectroscopy. Small angle x-ray scattering (SAXS) revealed the spatially-selective incorporation of vanadium oxide in the POEM domains. Upon the incorporation of vanadium oxide, the domain periodicity of the graft copolymer monotonously increased from 17.2 to 21.0 nm at a vanadium content 14 v%, above which it remained almost invariant. The selective interaction of vanadium oxide with POEM was further verified by differential scanning calorimetry (DSC) and FT-IR spectroscopy. The nanocomposite films exhibited excellent mechanical properties $(l0^{-5}-10^{-7}dyne/cm^2)$, mostly due to the confinement of vanadium oxide in the POEM chains as well as the interfaces created by the microphase separation of the graft copolymer.

Microstructural and Mechanical Characteristics of TiZrAlN Nanocomposite Thin Films by CFUBMS (CFUBMS을 이용한 TiZrAlN 나노복합 박막의 미세 구조와 기계적 특성)

  • Kim, Youn-J.;Lee, Ho-Y.;Kim, Yong-M.;Kim, Kab-S.;Han, Jeon-G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Quaternary TiZrAlN nanocomposite thin films were synthesized by Closed-Field Unbalanced Magnetron Sputtering (CFUBMS), and their microstructure and mechanical characteristics were examined. The grain refinement of the TiZrAlN nanocomposite thin films was controlled by adjusting the $N_2$ partial pressure. The hardness of the film varied with the $N_2$ partial pressure and the maximum value was obtained approximately 47 GPa. It was also confirmed that there is a critical value of the grain size($d_c$) to need maximum hardness.

Preparation and Characteristics of Biodegradable Polyurethane/Clay Nanocomposite Films (생분해성 폴리우레탄/클레이 나노복합 필름의 제조 및 특성 연구)

  • Kim, Seong Woo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.382-387
    • /
    • 2013
  • Biodegradable polyurethane (PU)/clay nanocomposite films were prepared via extrusion compounding process followed by casting film process. Organically modified montmorillonite (denoted as C30B) with a large amount of hydroxyl groups on its surface was used for the formation of strong bonding with PU resin. From both XRD analysis and TEM observations, the intercalated and exfoliated structure, and dispersion state of silicate platelets in the compounded nanocomposite films were confirmed. In addition, the rheological and tensile properties, optical transparency, oxygen permeability of the prepared nanocomposites were investigated as a function of added nanoclay content, and moreover based on these results, the corelation between the morphology and the resulting properties of the nanocomposites could be presented. The inclusion of nanoclays at appropriate content resulted in remarkable improvement in the nanocomposite performance including tensile modulus, elongation, transparency, and oxygen barrier property, however at excess amount of nanoclays, reduction or very slight increase was observed due to poor dispersion. The biodegradability of the prepared nanocomposite film was evaluated by examining the deterioration in the barrier and tensile properties during degradation period under compost.

Preparation and Characterization of UV-cured Polyurethane Acrylate/ZnO Nanocomposite Films (자외선 경화형 폴리우레탄 아크릴레이트/ZnO 나노콤포지트 필름의 제조 및 특성 분석)

  • Jeon, Gwonyoung;Park, Su-il;Seo, Jongchul;Seo, Kwangwon;Han, Haksoo;You, Young Chul
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.610-616
    • /
    • 2011
  • A series of polyurethane acrylate/ZnO (PUA/ZnO) nanocomposite films with different ZnO contents were successfully prepared via a UV-curing system. The synthesis and physical properties including morphological structure, thermal properties, barrier properties and optical properties, and antimicrobial properties were investigated as a function of ZnO concentration. FTIR and SEM results showed that these PUA/ZnO nanocomposite films did not have a strong interaction between PUA and ZnO, which may lead to no increase in thermal stability. By incorporating ZnO nanoparticles, the UV blocking and antibacterial properties increased as the content of ZnO increased. Specially, the oxygen permeability in composite films changed from $2005cc/m^2/day$ to $150cc/m^2/day$ by adding the ZnO nanoparticle, which indicates that the PUA/ZnO nanocomposite films can be applied as good barrier packaging materials. Physical properties of the UV-cured PUA/ZnO nanocomposite film are strongly dependent upon the dispersion state of ZnO nanoparticles and their morphology in the films.

Dielectric Properties of Poly(vinyl phenol)/Titanium Oxide Nanocomposite Thin Films formed by Sol-gel Process

  • Myoung, Hey-J;Kim, Chul-A;You, In-Kyu;Kang, Seung-Y;Ahn, Seong-D;Kim, Gi-H;Oh, ji-young;Baek, Kyu-Ha;Suh, Kyung-S;Chin, In-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1572-1575
    • /
    • 2005
  • Poly(vinyl phenol)(PVP)/$TiO_2$ nanocomposite the films have been prepared incorporating metal alkoxide with vinyl polymer to obtain high dielectric constant gate insulating material for a organic thin film transistor. The surface composition, the morphology, and the thermal and electrical properties of the hybrid nanocomposite films were observed by ESCA, scanning electron microscopy (SEM), atomic force microscopy(AFM), and thermogravimetric analysis (TGA). Thin hybrid films exhibit much higher dielectric constants (7.79 at 40wt% metal alkoxide).

  • PDF

MAGNETISM OF NANOCOMPOSITE CoSm-BASED FILMS

  • Shan, Z.S.;Liu, Y.;Jeong, S.Y.;Zhang, Y.B.;Al-Omari, I.A.;Sellmyer, D.J.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.702-709
    • /
    • 1995
  • In this paper we review recent work in our laboratory on nanocomposite CoSm-based films including CoSm with Cr underlayer (CoSm//Cr), exchange-coupled magnetic films consisting of CoSm and FeCo layers (CoSm/FeCo), and CoSm multilayers with nonmagnetic spacing layers of SmO (CoSm/SmO). The emphasis is on detailed investigations of microstructure and magnetic properties for CoSm//Cr films, exchange-spring effects for CoSm/FeCo films, and interlayer effects for (CoSm/ SmO) multilayers.

  • PDF

Preparation and Surface Properties of Polysulfone/Organophilic Layered Silicate Nanocomposites (폴리설폰/친유기화 층상실리케이트 나노복합체의 제조 및 표면 특성)

  • Sul, Kyung-Il;Ma, Seung Lac;Kim, Yong Seok;Lee, Jae Heung;Won, Jong Chan
    • Journal of Adhesion and Interface
    • /
    • v.4 no.4
    • /
    • pp.15-21
    • /
    • 2003
  • Polysulfone/organophilic layered silicate nanocomposites were prepared in the range of 0.25 to 9 wt% of organophilic-layered silicate by solution blend. Nano-hybridized films were cast from the blend solution. Exfoliation and intercalation of the polysulfone/organophiliclayered silicate nanocomposite films were confirmed by an X-ray diffractometer and a transmission electron microscope. Surface morphologies of polysulfone/organophilic layered silicate nanocomposite films were determined by a scanning electronic microscope and an atomic force microscope. When the organophilic layered silicate was added more than 1.5 wt%, the surface roughness (RMS) was rapidly increased because clusters of intercalated organophilic layered silicate particles existed on the polysulfone/organophilic-layered silicate film surface. Surface tension revealed an upward tendency over the contents of 1.5 wt% organophilic layered silicate in polysulfone/organophilic layered silicate nanocomposite. The change of surface morphology in polysulfone/organophilic layered silicate nanocomposite were affected by nano scale dispersed and intercalated organophilic layered silicate particles.

  • PDF