Browse > Article
http://dx.doi.org/10.9713/kcer.2013.51.3.382

Preparation and Characteristics of Biodegradable Polyurethane/Clay Nanocomposite Films  

Kim, Seong Woo (Department of Chemical Engineering, Kyonggi University)
Publication Information
Korean Chemical Engineering Research / v.51, no.3, 2013 , pp. 382-387 More about this Journal
Abstract
Biodegradable polyurethane (PU)/clay nanocomposite films were prepared via extrusion compounding process followed by casting film process. Organically modified montmorillonite (denoted as C30B) with a large amount of hydroxyl groups on its surface was used for the formation of strong bonding with PU resin. From both XRD analysis and TEM observations, the intercalated and exfoliated structure, and dispersion state of silicate platelets in the compounded nanocomposite films were confirmed. In addition, the rheological and tensile properties, optical transparency, oxygen permeability of the prepared nanocomposites were investigated as a function of added nanoclay content, and moreover based on these results, the corelation between the morphology and the resulting properties of the nanocomposites could be presented. The inclusion of nanoclays at appropriate content resulted in remarkable improvement in the nanocomposite performance including tensile modulus, elongation, transparency, and oxygen barrier property, however at excess amount of nanoclays, reduction or very slight increase was observed due to poor dispersion. The biodegradability of the prepared nanocomposite film was evaluated by examining the deterioration in the barrier and tensile properties during degradation period under compost.
Keywords
Biodegradable Polyurethane; Nanocomposite; Extrusion Process; Exfoliation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Rosen, S. L., Fundamental Principles of Polymeric Materials, 2nd ed., John Wiley & Sons, New York, NY(1993).
2 Sorrentino, A., Gorrasi, G. and Vittoria, V., "Potential Perspective of Bio-nanocomposites for Food Packaging Applications," Trends Food Sci. Tech., 18, 84-95(2007).   DOI   ScienceOn
3 Blackwell, A. L., in K. M. Finlayson(Ed.), Plastic Film Technology: High Barrier Plastic Films for Packaging, Technomic, Lancaster, 41-50(1989).
4 Guilbert, S., Cuq, B. and Gontard, N., "Recent Innovations in Edible and/or Biodegradable Packaging Materials," Food Additives and Contaminants., 14(6), 741-751(1997).   DOI   ScienceOn
5 Petersen, K., Nielsen, P. V., Bertelsen, G., Lawther, M., Olsen, M. B. and Nilssonk, N. H., "Potential of Bio-based Materials for Food Packaging," Trends Food Sci. Tech., 10, 52-68(1999).   DOI   ScienceOn
6 Cho, M. W. and Chang, Y. W., "Synthesis and Physical Properties of Polyurethane/Clay Nanocomposite," J. Korean Ind. Eng. Chem., 11(5), 517-521(2000).   과학기술학회마을
7 Cho, T. W. and Kim, S. W., "Morphologies and Properties of Nanocomposite Films Based on a Biodegradable Poly(ester)urethane Elastomer," J. Appl. Polym. Sci., 121(3), 1622-1630(2011).   DOI   ScienceOn
8 Chavarria, F. and Paul, D. R., "Morphology and Properties of Thermoplastic Polyurethane Nanocomposites: Effect of Organoclay Structure," Polymer, 47, 7760-7773(2006).   DOI   ScienceOn
9 Lee, S. K., Seong, D. G. and Youn, J. R., "Degradation and Rheological Properties of Biodegradable Nanocomposites Prepared by Melt Intercalation Method," Fibers and Polymers, 6(4), 289-296 (2005).   과학기술학회마을   DOI   ScienceOn
10 Chen, G. and Yoon, J., "Thermal Stability of Poly(L-lactide)/ Poly(butylene succinate)/Clay Nanocomposites," Polym. Degrad. Stab., 88, 206-212(2005).   DOI   ScienceOn
11 Ray, S. S., Yanada, K., Okamato, M. and Ueda, K., "Biodegradable Polylactide/Montmorillonite Nanocomposites," J. Nanosci. Nanotechnol., 3(6), 503-510(2003).   DOI   ScienceOn
12 Chang, J., An, Y. U. and Sur, G. S., "Poly(lactic acid) Nanocomposites with Various Organoclays. I. Thermomechanical Properties, Morphology, and Gas Permeability," J. Polym. Sci.: Part B: Polym. Physic., 41, 94-103(2002).
13 Yang, K., Wang, X. and Wang, Y., "Progress in Nanocomposite of Biodegradable Polymer," J. Ind. Eng. Chem., 13(4), 485-500(2007).
14 Ray, S. S., Okamato, K. and Okamato, M., "Structure and Properties of Nanocomposites Based on Poly(butylene succinate) and Organically Modified Montmorillonite," J. Appl. Polym. Sci., 102, 777-785(2006).   DOI   ScienceOn
15 Li, Y. and Shimizu, H., "Toughening of Polylactide by Melt Blending with a Biodegradable Poly(ether)urethane Elastomer," Macromol. Biosci., 7, 921-928(2007).   DOI   ScienceOn
16 Yeo, J. H., Lee, C. H., Park, C. S., Lee, K. J., Nam, J. D. and Kim, S. W., "Rheological, Morphological, Mechanical, and Barrier properties of PP/EVOH Blends," Adv. Polym. Tech., 20(3), 191-201(2001).   DOI   ScienceOn
17 Kim, D. J. and Kim, S. W., "Barrier Property and Morphology of Polypropylene/Polyamide Blend Film," Kor. J. Chem. Eng., 20(4), 776-782(2003).   과학기술학회마을   DOI   ScienceOn
18 Lilichenko, N., Marksimov, R. D., Zicans, J., Meri, R. M. and Plume, E., "A Biodegradable Polymer Nanocomposite: Mechanical and Barrier Properties," Mech. Compos. Mater., 44(1), 45-56 (2008).   DOI   ScienceOn
19 Dan, C. H., Lee, M. H., Kim, Y. D., Min, B. H. and Kim, J. H., "Effect of Clay Modifiers on the Morphology and Physical Properties of Thermoplastic Polyurethane/Clay Nanocomposites," Polymer, 47, 6718-6730(2006).   DOI   ScienceOn
20 Meng, X., Du, X., Wang, Z., Bi, W. and Tang, T., "The Investigation of Exfoliation Process of Organic Modified Montmorillonite in Thermoplastic Polyurethane with Different Molecular Weights," Compos. Sci. Tech., 68, 1815-1821(2008).   DOI   ScienceOn
21 Lee, S. U., Oh, I. H., Lee, J. H., Choi, K. Y. and Lee, S. G., "Preparation and Characterization of Polypropylene/Montmorillonite Nanocomposites," Polymer(Korea), 29(3), 271-276(2005).   과학기술학회마을
22 Finnigan, B., Martin, D., Halley, P., Truss, R. and Campbell, K., "Morphology and Properties of Thermoplastic Polyurethane Layered Silicates," Polymer, 45, 2249-2260(2004).   DOI   ScienceOn