DOI QR코드

DOI QR Code

Preparation and Characteristics of Biodegradable Polyurethane/Clay Nanocomposite Films

생분해성 폴리우레탄/클레이 나노복합 필름의 제조 및 특성 연구

  • Received : 2012.12.14
  • Accepted : 2013.03.27
  • Published : 2013.06.01

Abstract

Biodegradable polyurethane (PU)/clay nanocomposite films were prepared via extrusion compounding process followed by casting film process. Organically modified montmorillonite (denoted as C30B) with a large amount of hydroxyl groups on its surface was used for the formation of strong bonding with PU resin. From both XRD analysis and TEM observations, the intercalated and exfoliated structure, and dispersion state of silicate platelets in the compounded nanocomposite films were confirmed. In addition, the rheological and tensile properties, optical transparency, oxygen permeability of the prepared nanocomposites were investigated as a function of added nanoclay content, and moreover based on these results, the corelation between the morphology and the resulting properties of the nanocomposites could be presented. The inclusion of nanoclays at appropriate content resulted in remarkable improvement in the nanocomposite performance including tensile modulus, elongation, transparency, and oxygen barrier property, however at excess amount of nanoclays, reduction or very slight increase was observed due to poor dispersion. The biodegradability of the prepared nanocomposite film was evaluated by examining the deterioration in the barrier and tensile properties during degradation period under compost.

압출 컴파운딩 공정 및 케스팅 필름 공정을 이용하여 생분해성 폴리우레탄(PU)/클레이 나노복합 필름을 제조하였다. PU 수지와의 강한 결합 형성을 위해 유기적으로 개질되어 그 표면에 많은 양의 히드록시기를 갖는 MMT 나노클레이(C30B)를 사용하였다. 압출 공정 중 발생된 높은 전단 응력에 의해 발현된 복합체 내 나노판상체의 삽입/박리 구조 및 분산 상태를 XRD 분석 및 TEM 관찰을 통해 확인하였다. 또한 제조된 나노복합체의 유변물성, 인장물성, 투명성, 산소투과도의 변화를 첨가된 나노클레이 함량에 따라 조사하였으며, 이로부터 나노복합체 내 나노판상체의 박리 및 분산 구조와 물성과의 상관 관계를 제시할 수 있었다. 일정수준의 함량으로 첨가된 나노클레이는 복합 필름의 인장 탄성율, 연신율, 투명성, 산소차단성 등의 성능 향상에 뚜렷하게 기여하였으나, 그 이상의 함량으로 첨가되면 불완전한 박리 및 불균질한 분산성으로 인하여 오히려 성능이 감소하거나 또는 그 증가 폭이 매우 작은 것으로 나타났다. PU/clay 나노복합 필름의 생분해성은 퇴비화 실험을 통한 분해시간에 따른 필름의 산소투과도 및 인장물성의 변화를 관찰함으로써 확인하였다.

Keywords

References

  1. Lilichenko, N., Marksimov, R. D., Zicans, J., Meri, R. M. and Plume, E., "A Biodegradable Polymer Nanocomposite: Mechanical and Barrier Properties," Mech. Compos. Mater., 44(1), 45-56 (2008). https://doi.org/10.1007/s11029-008-0006-x
  2. Sorrentino, A., Gorrasi, G. and Vittoria, V., "Potential Perspective of Bio-nanocomposites for Food Packaging Applications," Trends Food Sci. Tech., 18, 84-95(2007). https://doi.org/10.1016/j.tifs.2006.09.004
  3. Blackwell, A. L., in K. M. Finlayson(Ed.), Plastic Film Technology: High Barrier Plastic Films for Packaging, Technomic, Lancaster, 41-50(1989).
  4. Guilbert, S., Cuq, B. and Gontard, N., "Recent Innovations in Edible and/or Biodegradable Packaging Materials," Food Additives and Contaminants., 14(6), 741-751(1997). https://doi.org/10.1080/02652039709374585
  5. Petersen, K., Nielsen, P. V., Bertelsen, G., Lawther, M., Olsen, M. B. and Nilssonk, N. H., "Potential of Bio-based Materials for Food Packaging," Trends Food Sci. Tech., 10, 52-68(1999). https://doi.org/10.1016/S0924-2244(99)00019-9
  6. Cho, M. W. and Chang, Y. W., "Synthesis and Physical Properties of Polyurethane/Clay Nanocomposite," J. Korean Ind. Eng. Chem., 11(5), 517-521(2000).
  7. Cho, T. W. and Kim, S. W., "Morphologies and Properties of Nanocomposite Films Based on a Biodegradable Poly(ester)urethane Elastomer," J. Appl. Polym. Sci., 121(3), 1622-1630(2011). https://doi.org/10.1002/app.33766
  8. Chavarria, F. and Paul, D. R., "Morphology and Properties of Thermoplastic Polyurethane Nanocomposites: Effect of Organoclay Structure," Polymer, 47, 7760-7773(2006). https://doi.org/10.1016/j.polymer.2006.08.067
  9. Lee, S. K., Seong, D. G. and Youn, J. R., "Degradation and Rheological Properties of Biodegradable Nanocomposites Prepared by Melt Intercalation Method," Fibers and Polymers, 6(4), 289-296 (2005). https://doi.org/10.1007/BF02875664
  10. Chen, G. and Yoon, J., "Thermal Stability of Poly(L-lactide)/ Poly(butylene succinate)/Clay Nanocomposites," Polym. Degrad. Stab., 88, 206-212(2005). https://doi.org/10.1016/j.polymdegradstab.2004.06.005
  11. Ray, S. S., Yanada, K., Okamato, M. and Ueda, K., "Biodegradable Polylactide/Montmorillonite Nanocomposites," J. Nanosci. Nanotechnol., 3(6), 503-510(2003). https://doi.org/10.1166/jnn.2003.220
  12. Chang, J., An, Y. U. and Sur, G. S., "Poly(lactic acid) Nanocomposites with Various Organoclays. I. Thermomechanical Properties, Morphology, and Gas Permeability," J. Polym. Sci.: Part B: Polym. Physic., 41, 94-103(2002).
  13. Yang, K., Wang, X. and Wang, Y., "Progress in Nanocomposite of Biodegradable Polymer," J. Ind. Eng. Chem., 13(4), 485-500(2007).
  14. Ray, S. S., Okamato, K. and Okamato, M., "Structure and Properties of Nanocomposites Based on Poly(butylene succinate) and Organically Modified Montmorillonite," J. Appl. Polym. Sci., 102, 777-785(2006). https://doi.org/10.1002/app.23940
  15. Li, Y. and Shimizu, H., "Toughening of Polylactide by Melt Blending with a Biodegradable Poly(ether)urethane Elastomer," Macromol. Biosci., 7, 921-928(2007). https://doi.org/10.1002/mabi.200700027
  16. Yeo, J. H., Lee, C. H., Park, C. S., Lee, K. J., Nam, J. D. and Kim, S. W., "Rheological, Morphological, Mechanical, and Barrier properties of PP/EVOH Blends," Adv. Polym. Tech., 20(3), 191-201(2001). https://doi.org/10.1002/adv.1015
  17. Kim, D. J. and Kim, S. W., "Barrier Property and Morphology of Polypropylene/Polyamide Blend Film," Kor. J. Chem. Eng., 20(4), 776-782(2003). https://doi.org/10.1007/BF02706923
  18. Dan, C. H., Lee, M. H., Kim, Y. D., Min, B. H. and Kim, J. H., "Effect of Clay Modifiers on the Morphology and Physical Properties of Thermoplastic Polyurethane/Clay Nanocomposites," Polymer, 47, 6718-6730(2006). https://doi.org/10.1016/j.polymer.2006.07.052
  19. Meng, X., Du, X., Wang, Z., Bi, W. and Tang, T., "The Investigation of Exfoliation Process of Organic Modified Montmorillonite in Thermoplastic Polyurethane with Different Molecular Weights," Compos. Sci. Tech., 68, 1815-1821(2008). https://doi.org/10.1016/j.compscitech.2008.01.012
  20. Lee, S. U., Oh, I. H., Lee, J. H., Choi, K. Y. and Lee, S. G., "Preparation and Characterization of Polypropylene/Montmorillonite Nanocomposites," Polymer(Korea), 29(3), 271-276(2005).
  21. Finnigan, B., Martin, D., Halley, P., Truss, R. and Campbell, K., "Morphology and Properties of Thermoplastic Polyurethane Layered Silicates," Polymer, 45, 2249-2260(2004). https://doi.org/10.1016/j.polymer.2004.01.049
  22. Rosen, S. L., Fundamental Principles of Polymeric Materials, 2nd ed., John Wiley & Sons, New York, NY(1993).

Cited by

  1. Preparation and Properties of Moisture-absorbing Film Impregnated with Polyacrylic Acid Partial Sodium Salt Material vol.52, pp.4, 2014, https://doi.org/10.9713/kcer.2014.52.4.530
  2. Comparing of melt blending and solution mixing methods on the physical properties of thermoplastic polyurethane/organoclay nanocomposite films vol.30, pp.7, 2017, https://doi.org/10.1177/0892705715614068
  3. 판상형 Glass-flake를 이용한 내캐비테이션 도료 개발 및 성능평가 vol.54, pp.2, 2016, https://doi.org/10.9713/kcer.2016.54.2.145
  4. 다중벽 탄소나노튜브와 니켈 분말을 포함하는 전도성 복합체 제조 vol.54, pp.3, 2013, https://doi.org/10.9713/kcer.2016.54.3.410
  5. 자가치유성을 갖는 고분자개질 방수아스팔트-몬모릴로나이트 composite 제조: 2. 3-aminopropyltriethoxysilane에 의한 몬모릴로나이트(K-10)의 실란화 최적화 검증 vol.55, pp.3, 2013, https://doi.org/10.9713/kcer.2017.55.3.409