• 제목/요약/키워드: Nanocoating

검색결과 12건 처리시간 0.026초

Conformal $Al_2$O$_3$ Nanocoating of Semiconductor Nanowires by Atomic Layer Deposition

  • Hwang, Joo-Won;Min, Byung-Don;Kim, Sang-Sig
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제3C권2호
    • /
    • pp.66-69
    • /
    • 2003
  • Various semiconductor nanowires such as GaN, GaP, InP, Si$_3$N$_4$, SiO$_2$/Si, and SiC were coated conformally with aluminum oxide (Al$_2$O$_3$) layers by atomic layer deposition (ALD) using trimethylaluminum (TMA) and distilled water ($H_2O$) at a temperature of 20$0^{\circ}C$. Transmission electron microscopy (TEM) revealed that A1203 cylindrical shells conformally coat the semiconductor nanowires. This study suggests that the ALD of $Al_2$O$_3$ on nanowires is a promising method for preparing cylindrical dielectric shells for coaxially gated nanowire field-effect transistors.

Thermally/Dynamically Stable Superhydrophobic ZnO Nanoparticles on Various Substrates

  • Lee, M.K.;Kwak, G.J.;Yong, K.J.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.360-360
    • /
    • 2011
  • We demonstrated the fabrication method of superhydrophobic nanocoating through a facile spin-coating and the chemical modification. The resulting coating showed a tremendous water repellency with a static water contact angle (CA) of 158$^{\circ}$ and a hysteresis of 1$^{\circ}$. The number of ZnO nanoparticle (NP) coating cycles affected on the surface roughness, which is key role for superhydrophobic surface, and thus the CA can be modulated by changing the ZnO NP coating cycles. The CA can be controlled by changing the carbon length of Self-Assembled Monolayers(SAM). This simple ZnO coating is substrate-independent including flexible surfaces, papers and cotton fabrics, which can effectively be used in various potential applications. We also observed the thermal and dynamic stabilities of SAM on ZnO nanoparticles. The superhydrophobicic surface maintained its superhydrophobic properties below 250$^{\circ}C$ and under dynamic conditions.

  • PDF

Chemically Modified Superhydrophobic Zinc Oxide nanoparticle surface

  • 이미경;곽근재;용기중
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.448-448
    • /
    • 2011
  • We investigated the fabrication method of superhydrophobic nanocoating prepared by a simple spin-coating and the chemisorption of fatty acid. The resulting coating showed a tremendous water repellency (static water contact angle = $154^{\circ}$) and the water contact angle can be modulated by changing the number of deposition cycles of ZnO and the carbon length of Self-Assembled Monolayers (SAM). Varying the number of deposition cycles of ZnO controlled the surface roughness, and affected to the superhydrophobicity. This simple coating method can be universally applicable to any substrates including flexible surfaces, papers and cotton fabrics, which can effectively be used in various potential applications. We also observed the thermal and dynamic stabilities of SAM on ZnO nanoparticles. The superhydrophobicic surface maintained its superhydrophobic properties below $250^{\circ}C$ and under dynamic conditions.

  • PDF

Phase Identification of Nano-Phase Materials using Convergent Beam Electron Diffraction (CBED) Technique

  • Kim, Gyeung-Ho;Ahn, Jae-Pyoung
    • Applied Microscopy
    • /
    • 제36권spc1호
    • /
    • pp.47-56
    • /
    • 2006
  • Improvements are made to existing primitive cell volume measurement method to provide a real-time analysis capability for the phase analysis of nanocrystalline materials. Simplification is introduced in the primitive cell volume calculation leading to fast and reliable method for nano-phase identification and is applied to the phase analysis of Mo-Si-N nanocoating layer. In addition, comparison is made between real-time and film measurements for their accuracy of calculated primitive cell volume values and factors governing the accuracy of the method are determined. About 5% accuracy in primitive cell determination is obtained from camera length calibration and this technique is used to investigate the cell volume variation in WC-TiC core-shell microstructure. In addition to chemical compositional variation in core-shell type structure, primitive cell volume variation reveals additional information on lattice coherency strain across the interface.

EFFECT OF SOLUBLE ADDITIVES, BORIC ACID (H3BO3) AND SALT (NaCl), IN POOL BOILING HEAT TRANSFER

  • Kwark, Sang-M.;Amaya, Miguel;Moon, Hye-Jin;You, Seung-M.
    • Nuclear Engineering and Technology
    • /
    • 제43권3호
    • /
    • pp.195-204
    • /
    • 2011
  • The effects on pool boiling heat transfer of aqueous solutions of boric acid ($H_3BO_3$) and sodium chloride (NaCl) as working fluids have been studied. Borated and NaCl water were prepared by dissolving 0.5~5% volume concentration of boric acid and NaCl in distilled-deionized water. The pool boiling tests were conducted using $1{\times}1\;cm^2$ flat heaters at 1 atm. The critical heat flux (CHF) dramatically increased compared to boiling pure water. At the end of boiling tests it was observed that particles of boric acid and NaCl had deposited and formed a coating on the heater surface. The CHF enhancement and surface modification during boiling tests were very similar to those obtained from boiling with nanofluids. Additional experiments were carried out to investigate the reliability of the additives deposition in pure water. The boric acid and NaCl coatings disappeared after repeated boiling tests on the same surface due to the soluble nature of the coatings, thus CHF enhancement no longer existed. These results demonstrate that not only insoluble nanoparticles but also soluble salts can be deposited during boiling process and the deposited layer is solely responsible for significant CHF enhancement.

구리나노입자가 코팅된 열교환기의 안전성 향상을 위한 임계 열유속 측정실험 (Critical heat flux measurement experiment to improve safety of copper nano-particle coated heat exchanger)

  • 모용현;김남진;전용한;이덕수
    • 대한안전경영과학회지
    • /
    • 제19권4호
    • /
    • pp.317-322
    • /
    • 2017
  • When the heat flux on the heating surface following changing heat condition in the boiling heat transfer system exceeds critical heat flux, the critical heat flux phenomenon is going over to immediately the film boiling area and then it is occurred the physical destruction phenomenon of various heat transfer systems. In order to maximize the safe operation and performance of the heat transfer system, it is essential to improve the CHF(Critical Heat Flux) of the system. Therefore, we have analysis the effect of improving CHF and characteristics of heat transfer following the nanoparticle coating thickness. As the results, copper nanocoating time are increased to CHF, and in case of nano-coatings are increased spray-deposited coating times more than in the fure water; copper nanopowder is increased up to 6.40%. The boiling heat transfer coefficients of the pure water are increased up to 5.79% respectively. Also, the contact angle is decreased and surface roughness is increased when nano-coating time is increasingly going up.

Nano Fabrication of Functional Materials by Pulsed Laser Ablation

  • 윤종원
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.6.2-6.2
    • /
    • 2009
  • Nanostructured materials arecurrently receiving much attention because of their unique structural andphysical properties. Research has been stimulated by the envisagedapplications for this new class of materials in electronics, optics, catalysisand magnetic storage since the properties derived from nanometer-scalematerials are not present in either isolated molecules or micrometer-scalesolids. This study presents the experimental results derived fromthe various functional materials processed in nano-scale using pulsed laserablation, since those materials exhibit new physical phenomena caused by thereduction dimensionality. This presentation consists of three mainparts to consider in pulsed laser ablation (PLA) technique; first nanocrystallinefilms, second, nanocolloidal particles in liquid, and third, nanocoating fororganic/inorganic hybridization. Firstly, nanocrystalline films weresynthesized by pulsed laser deposition at various Ar gas pressures withoutsubstrate heating and/or post annealing treatments. From the controlof processng parameters, nanocystalline films of complex oxides and non-oxidematerials have been successfully fabricated. The excellentcapability of pulsed laser ablation for reactive deposition and its ability totransfer the original stoichiometry of the bulk target to the deposited filmsmakes it suitable for the fabrication of various functionalmaterials. Then, pulsed laser ablation in liquid has attracted muchattention as a new technique to prepare nanocolloidal particles. Inthis work, we represent a novel synthetic approach to directly producehighly-dispersed fluorescent colloidal nanoparticles using the PLA from ceramicbulk target in liquid phase without any surfactant. Furthermore, novel methodbased on simultaneous motion tracking of several individual nanoparticles isproposed for the convenient determination of nanoparticle sizedistributions. Finally, we report that the GaAs nanocrystals issynthesized successfully on the surface of PMMA (polymethylmethacrylate)microspheres by modified PLD technique using a particle fluidizationunit. The characteristics of the laser deposited GaAs nanocrytalswere then investigated. It should be noted that this is the first successfultrial to apply the PLD process nanocrystals on spherical polymermatrices. The present process is found to be a promising method fororganic/inorganic hybridization.

  • PDF

Polysaccharide-based superhydrophilic coatings with antibacterial and anti-inflammatory agent-delivering capabilities for ophthalmic applications

  • Park, Sohyeon;Park, Joohee;Heo, Jiwoong;Lee, Sang-Eun;Shin, Jong-Wook;Chang, Minwook;Hong, Jinkee
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.229-237
    • /
    • 2018
  • Medical silicone tubes are generally used as implants for the treatment of nasolacrimal duct stenosis. However, side effects such as allergic reactions and bacterial infections have been reported following the silicone tube insertion, which cause surgical failure. These drawbacks can be overcome by modifying the silicone tube surface using a functional coating. Here, we report a biocompatible and superhydrophilic surface coating based on a polysaccharide multilayer nanofilm, which can load and release antibacterial and anti-inflammatory agents. The nanofilm is composed of carboxymethylcellulose (CMC) and chitosan (CHI), and fabricated by layer-by-layer (LbL) assembly. The LbL-assembled CMC/CHI multilayer films exhibited superhydrophilic properties, owing to the rough and porous structure obtained by a crosslinking process. The surface coated with the superhydrophilic CMC/CHI multilayer film initially exhibited antibacterial activity by preventing the adhesion of bacteria, followed by further enhanced antibacterial effects upon releasing the loaded antibacterial agent. In addition, inflammatory cytokine assays demonstrated the ability of the coating to deliver anti-inflammatory agents. The versatile nanocoating endows the surface with anti-adhesion and drug-delivery capabilities, with potential applications in the biomedical field. Therefore, we attempted to coat the nanofilm on the surface of an ophthalmic silicone tube to produce a multifunctional tube suitable for patient-specific treatment.

Bone healing dynamics associated with 3 implants with different surfaces: histologic and histomorphometric analyses in dogs

  • Lee, Jungwon;Yoo, Jung Min;Amara, Heithem Ben;Lee, Yong-Moo;Lim, Young-Jun;Kim, Haeyoung;Koo, Ki-Tae
    • Journal of Periodontal and Implant Science
    • /
    • 제49권1호
    • /
    • pp.25-38
    • /
    • 2019
  • Purpose: This study evaluated differences in bone healing and remodeling among 3 implants with different surfaces: sandblasting and large-grit acid etching (SLA; IS-III $Active^{(R)}$), SLA with hydroxyapatite nanocoating (IS-III $Bioactive^{(R)}$), and SLA stored in sodium chloride solution ($SLActive^{(R)}$). Methods: The mandibular second, third, and fourth premolars of 9 dogs were extracted. After 4 weeks, 9 dogs with edentulous alveolar ridges underwent surgical placement of 3 implants bilaterally and were allowed to heal for 2, 4, or 12 weeks. Histologic and histomorphometric analyses were performed on 54 stained slides based on the following parameters: vertical marginal bone loss at the buccal and lingual aspects of the implant (b-MBL and l-MBL, respectively), mineralized bone-to-implant contact (mBIC), osteoid-to-implant contact (OIC), total bone-to-implant contact (tBIC), mineralized bone area fraction occupied (mBAFO), osteoid area fraction occupied (OAFO), and total bone area fraction occupied (tBAFO) in the threads of the region of interest. Two-way analysis of variance (3 types of implant $surface{\times}3$ healing time periods) and additional analyses for simple effects were performed. Results: Statistically significant differences were observed across the implant surfaces for OIC, mBIC, tBIC, OAFO, and tBAFO. Statistically significant differences were observed over time for l-MBL, mBIC, tBIC, mBAFO, and tBAFO. In addition, an interaction effect between the implant surface and the healing time period was observed for mBIC, tBIC, and mBAFO. Conclusions: Our results suggest that implant surface wettability facilitates bone healing dynamics, which could be attributed to the improvement of early osseointegration. In addition, osteoblasts might become more activated with the use of HA-coated surface implants than with hydrophobic surface implants in the remodeling phase.