• 제목/요약/키워드: Nano-surface

검색결과 3,073건 처리시간 0.038초

에폭시 절연의 전기적 트리잉에 관한 표면 개질된 나노알루미나의 영향 (The Influence of Surface Modified Nano Alumina for Electrical Treeing in Epoxy Insulation)

  • 박재준
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1218-1224
    • /
    • 2016
  • This paper presents the results of a study on the effect of surface modified alumina nanocomposites on electrical tree growth in epoxy insulation. Treeing experiments were conducted at a fixde AC voltage (500kV/mm, 10kV/60Hz)on unfilled epoxy sample as well as epoxy nanocomposites of 4 types with different loading and surface modified GDE gram. Time for tree growth as well as tree propagation length were studied. The results show that there is a significant improvement tree propagation time compare unfilled epoxy to epoxy nano alumina composites. Different tree propagation shapes as well as slower tree growth with 4 types nano alumina composites were observed.

표면형상이 젖음각과 마이크로/나노 트라이볼로지 특성에 미치는 영향 (Effect of surface topography on wetting angle and micro/nano-tribological characteristics)

  • 윤의성;오현진;양승호;공호성
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.25-33
    • /
    • 2002
  • Effect of surface topography on the water wetting nature and micro/nano tribological characteristics of Si-wafer and PTFE was experimentally studied. The ion beam treatment was performed with a hollow cathode ion gun in different argon don dose conditions in a vacuum chamber to change the surface topography, Micro/nano tribological characteristics, water wetting angles and roughness were measured with a micro tribo tester, SPM (scanning prove microscope), contact anglemeter and profilometer, respectively. Results showed that surface roughness increased with the argon ion dose. The water wetting angle of tile ion beam treated samples also increased with the ion dose. Results also showed that micro-adhesion and micro-friction depend on the wetting characteristics of the PTFE samples. However, nano-triboloSical characteristics showed little dependence on the wetting angles. The water wetting characteristics of modified PTFE samples were discussed in terms of the surface topographic characteristics.

  • PDF

연속체 이론을 기반으로 한 나노 허니콤 구조물의 탄성 거동 예측 (The Prediction of Elastic Behavior of the Nano-Sized Honeycombs Based on the Continuum Theory)

  • 이용희;정준호;조맹효
    • 한국전산구조공학회논문집
    • /
    • 제24권4호
    • /
    • pp.413-419
    • /
    • 2011
  • 나노 크기의 허니콤 구조물은 거시적 크기의 허니콤 구조물에 비해 보다 높은 부피 대비 표면적 비율을 구현하여 전기적, 화학적인 촉매로써 기능성을 극대화할 수 있다. 나노 크기의 구조물은 거시적 크기의 구조물과 다른 기계적 거동양상을 보이며 이는 표면효과에 기인한다. 이러한 표면효과는 원자 수준 전산모사(atomistic simulation)를 통해 규명할 수 있으나 나노 허니콤 구조물의 거동을 예측하는 것은 현실적으로 과도한 전산자원 및 계산시간으로 인해 불가능한 실정이다. 본 연구에서는 표면응력 탄성모델을 적용한 브리징방법을 균질화기법과 연계하여 나노 크기의 허니콤 구조물의 기계적 거동을 효율적으로 예측하였다.

양극산화공정을 이용한 반사방지 성형용 나노 마스터 개발 (Fabrication of Nano Master with Anti-reflective Surface Using Aluminum Anodizing Process)

  • 신홍규;박용민;서영호;김병희
    • 한국생산제조학회지
    • /
    • 제18권6호
    • /
    • pp.697-701
    • /
    • 2009
  • A simple method for the fabrication of porous nano-master for the anti-reflection effect on the transparent substrates is presented. In the conventional fabrication methods for antireflective surface, coating method using materials with low refractive index has usually been used. However, it is required to have a high cost and long processing time for mass production. In this paper, we developed a porous nano-master with anti-reflective surface for the molding stamper of the injection mold, hot embossing and UV imprinting by using the aluminum anodizing process. Through two-step anodizing and etching processes, a porous nano-master with anti-reflective surface was fabricated at the large area. Pattern size Pore diameter and inter-pore distance are about 130nm and 200nm, respectively. In order to replicate anti-reflective structure, hot embossing process was performed by varying the processing parameters such as temperature, pressure and embossing time etc. Finally, antireflective surface can be successfully obtained after etching process to remove selectively silicon layer of AAO master.

  • PDF

SiC 나노입자를 이용하여 형성한 Ni-SiC 복합도금막의 미세구조 및 특성 (Microstructure and Properties of Ni-SiC Composite Coating Layers Formed using Nano-sized SiC Particles)

  • 이홍기;손성호;이호영;전준미
    • 한국표면공학회지
    • /
    • 제40권2호
    • /
    • pp.63-69
    • /
    • 2007
  • Ni-SiC composite coating layers were formed using two kinds of SiC nano-particles by DC electrodeposition in a nickel sulfamate bath containing SiC particles. The effect of stirring rate and SiC particle type on the microstructure and properties of Ni-SiC composite coating layers were investigated. Results revealed that the trend of deposition rate is closely related to the codeposition of SiC and the deposition rate. or nickel, and the codeposition behavior of SiC can be explained by using hydrodynamic effect due to stirring. The average roughness and friction coefficient are closely related to the codeposition of SiC and SiC particle size. It was found that the Victors microhardness of the composite coating layers increased with increasing codeposition of SiC. The composite coating layers containing smaller SiC particle showed higher hardness. This can be explained by using the strengthening mechanism resulting from dispersion hardening. Anti-wear property of the composite coating layers formed using 130 nm-sized SiC nano-particles has been improved by 2,300% compared with pure electroplated-nickel layer.

Friction Behavior of High Velocity Oxygen Fuel (HVOF) Thermal Spray Coating Layer of Nano WC-Co Powder

  • Cho, T.Y.;Yoon, J.H.;Kim, K.S.;Fang, W.;Joo, Y.K.;Song, K.O.;Youn, S.J.;Hwang, S.Y.;Chun, H.G.
    • 한국표면공학회지
    • /
    • 제40권4호
    • /
    • pp.170-174
    • /
    • 2007
  • High Velocity Oxygen Fuel (HVOF) thermal spray coating of nano size WC-Co powder (nWC-Co) has been studied as one of the most promising candidate for the possible replacement of the traditional hard plating in some area which causes environmental and health problems. nWC-Co powder was coated on Inconel 718 substrates by HVOF technique. The optimal coating process obtained from the best surface properties such as hardness and porosity is the process of oxygen flow rate (FR) 38 FMR, hydrogen FR 57 FMR and feed rate 35 g/min at spray distance 6 inch for both surface temperature $25^{\circ}C\;and\;500^{\circ}C$. In coating process a small portion of hard WC decomposes to less hard $W_2C$, W and C at the temperature higher than its decomposition temperature $1,250^{\circ}C$ resulting in hardness decrease and porosity increase. Friction coefficient increases with increasing coating surface temperature from 0.55-0.64 at $25^{\circ}C$ to 0.65-0.76 at $500^{\circ}C$ due to the increase of adhesion between coating and counter sliding surface. Hardness of nWC-Co is higher or comparable to those of other hard coatings, such as $Al_2O_3,\;Cr,\;Cr_2O_3$ and HVOF Tribaloy 400 (T400). This shows that nWC-Co is recommendable for durability improvement coating on machine components such as high speed spindle.

A New Approach to Surface Imaging by Nano Secondary Ion Mass Spectrometry

  • 홍태은;변미랑;장유진;김종필;정의덕
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.105.1-105.1
    • /
    • 2016
  • Many of the complex materials developed today derive their unique properties from the presence of multiple phases or from local variations in elemental concentration. Simply performing analysis of the bulk materials is not sufficient to achieve a true understanding of their physical and chemical natures. Secondary ion mass spectrometer (SIMS) has met with a great deal of success in material characterization. The basis of SIMS is the use of a focused ion beam to erode sample atoms from the selected region. The atoms undergo a charge exchange with their local environment, resulting in their conversion to positive and negative secondary ions. The mass spectrometric analysis of these secondary ions is a robust method capable of identifying elemental distribution from hydrogen to uranium with detectability of the parts per million (ppm) or parts per billion (ppb) in atomic range. Nano secondary ion mass spectrometer (Nano SIMS, Cameca Nano-SIMS 50) equipped with the reactive ion such as a cesium gun and duoplasmatron gun has a spatial resolution of 50 nm which is much smaller than other SIMS. Therefore, Nano SIMS is a very valuable tool to map the spatial distribution of elements on the surface of various materials In this talk, the surface imaging applications of Nano SIMS in KBSI will be presented.

  • PDF

사출 성형에 의한 소수성 플라스틱 기판 제작 (Injection Molding of Hydrophobic Plastic Plates)

  • 유영은;이관희;윤재성;최두선;김선경
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1563-1565
    • /
    • 2008
  • Hydrophobic plastic plates employing nano surface features are injection molded using thermoplastic materials. A variotherm molding process is devised for filling the nano pores and releasing the molded nano features from the master. The size of the molded nano surface features are about 100nm in diameter and 200nm in height. The size of the molded plate is about 30mm x 30mm and the thickness is 1mm. As molding materials, Polypropylene, PMMA, COC and PC are employed, which are all typical commodity thermoplastic materials. The mold temperature(stamper temperature) is investigated as a major processing parameter for molding high aspect ratio nano surface features. Almost fully molded nano features are fabricated above a certain level of mold temperature depends on the employing material. The contact angles on the injection molded plates are measured to estimate the hydrophobicity and found to have higher contact angle up to 180% compared to the blank plate with no surface features.

  • PDF

Confocal Scanning Microscopy : a High-Resolution Nondestructive Surface Profiler

  • Yoo, Hong-Ki;Lee, Seung-Woo;Kang, Dong-Kyun;Kim, Tae-Joong;Gweon, Dae-Gab;Lee, Suk-Won;Kim, Kwang-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권4호
    • /
    • pp.3-7
    • /
    • 2006
  • Confocal scanning microscopy is a measurement technique used to observe micrometer and sub-micrometer features due to its high resolution, nondestructive properties, and 3D surface profiling capabilities. The design, implementation, and performance test of a confocal scanning microscopy system are presented in this paper. A short-wavelength laser (405 nm) and an objective lens with a high numerical aperture (0.95) were used to achieve the desired high resolution, while the x- and y-axis scans were implemented using an acousto-optic deflector and galvanomirror, respectively. An objective lens with a piezo-actuator was used to scan the z-axis. A spatial resolution of less than 138 nm was achieved, along with successful 3D surface reconstructions.