• 제목/요약/키워드: Nano-sized thin film

검색결과 66건 처리시간 0.023초

Photovoltaic Efficiencies on Dye-Sensitized Solar Cells Assembled with Graphene-Linked TiO2 Anode Films

  • Kim, A-Young;Kim, Ji-Eun;Kim, Min-Young;Ha, Seung-Won;Tien, Ngyen Thi Thuy;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3355-3360
    • /
    • 2012
  • To promote the photoelectric conversion efficiency of dye-sensitized solar cells (DSSCs), graphene is introduced as a working electrode with $TiO_2$ in this study, because it has great transparency and very good conductivity. XRD patterns indicate the presence of graphene and $TiO_2$ particles in graphene-linked $TiO_2$ samples. Moreover, TEM pictures also show that the nano-sized $TiO_2$ particles are highly dispersed and well-linked onto the thin layered graphene. On the basis of the UV-visible spectra, the band gaps of $TiO_2$, 1.0 wt % graphene-$TiO_2$, 5.0 wt % graphene-$TiO_2$, and 10.0 wt % graphene-$TiO_2$ are 3.16, 2.94, 2.25, and 2.11 eV, respectively. Compared to pure $TiO_2$, the energy conversion efficiency was enhanced considerably by the application of graphene-linked $TiO_2$ anode films in the DSSCs to approximately 6.05% for 0.1 wt % graphene-$TiO_2$ with N719 dye (10.0 mm film thickness and $5.0mm{\times}5.0mm$ cell area) under $100mW/cm^2$ of simulated sunlight. The quantum efficiency was the highest when 1.0 wt % of graphene was used. In impedance curves, the resistance was smallest for 1.0 wt % graphene-$TiO_2$-DSSC.

질화탄소 표면층 및 열처리가 탄소 나노튜브 미세팁의 전계방출 및 장시간 안정성에 미치는 영향 (Effects of Carbon Nitride Surface Layers and Thermal Treatment on Field-Emission and Long-Term Stability of Carbon Nanotube Micro-Tips)

  • 노영록;김종필;박진석
    • 반도체디스플레이기술학회지
    • /
    • 제9권1호
    • /
    • pp.41-47
    • /
    • 2010
  • The effects of thermal treatment on CNTs, which were coated with a-$CN_x$ thin film, were investigated and related to variations of chemical bonding and morphologies of CNTs and also properties of field emission induced by thermal treatment. CNTs were directly grown on nano-sized conical-type tungsten tips via the inductively coupled plasma-chemical vapor deposition (ICP-CVD) system, and a-$CN_x$ films were coated on the CNTs using an RF magnetron sputtering system. Thermal treatment on a-$CN_x$ coated CNT-emitters was performed using a rapid thermal annealing (RTA) system by varying temperature ($300-700^{\circ}C$). Morphologies and microstructures of a-$CN_x$/CNTs hetero-structured emitters were analyzed by FESEM and HRTEM. Chemical composition and atomic bonding structures were analyzed by EDX, Raman spectroscopy, and XPS. The field emission properties of the a-$CN_x$/CNTs hetero-structured emitters were measured using a high vacuum (below $10^{-7}$ Torr) field-emission measurement system. For characterization of emission stability, the fluctuation and degradation of the emission current were monitored in terms of operation time. The results were compared with a-$CN_x$ coated CNT-emitters that were not thermally heated as well as with the conventional non-coated CNT-emitters.

전기영동법을 이용한 고체산화물 연료전지용 $Ce_{0.8}Sm_{0.2}O_{x}$ 전해질 박막 제조 (Preparation of $Ce_{0.8}Sm_{0.2}O_{x}$ Electrolyte Thin Film for Solid Oxide Fuel Cells by Electrophoretic Deposition)

  • 김동규;송민우;이경섭;김연수;김영순;신형식
    • Korean Chemical Engineering Research
    • /
    • 제49권6호
    • /
    • pp.781-785
    • /
    • 2011
  • 본 연구에서는 나노 크기의 세리아를 사마리움으로 일부 도핑(samaria-doped ceria(SDC))한 분말을 urea를 첨가제로 사용하여 수열합성법으로 합성하였으며 그 특성들을 XRD, FESEM, TEM 등을 통해 관찰하였다. 합성 시간 및 합성온도가 증가함에 따라 분말의 결정성 및 입도가 증가함을 확인하였다. 또한 이온전도도의 측정을 통해 합성된 SDC 파우더가 중 저온(600~$800^{\circ}C$) 부근에서 0.1 S/cm의 이온전도도를 보여 중 저온형 고체산화물 연료전지(IT-SOFC)의 고체 전해질에 적합함을 확인할 수 있었다. 합성된 SDC 분말은 중·저온 고체산화물 연료전지의 음극지지형 전해질로 사용하기 위해 전기영동 증착 방법을 이용하여 다공성 NiO-SDC 기판 위에 SDC 박막 증착을 시도하였다. 증착 용액은 acetone을 용매로 사용하고, 20V의 인가전압으로 10초간 증착한 결과 얇고 치밀하며 기공이 없는 SDC 박막이 형성되었음을 FESEM 분석을 통해 확인할 수 있었다.

초고경도 Ti-Al-Si-N 나노복합체 코팅막의 미세구조 및 트라이볼로지 거동에 관한 연구 (A Study on Microstructure and Tribological Behavior of Superhard Ti-Al-Si-N Nanocomposite Coatings)

  • 허성보;김왕렬
    • 한국표면공학회지
    • /
    • 제54권5호
    • /
    • pp.230-237
    • /
    • 2021
  • In this study, the influence of silicon contents on the microstructure, mechanical and tribological properties of Ti-Al-Si-N coatings were systematically investigated for application of cutting tools. The composition of the Ti-Al-Si-N coatings were controlled by different combinations of TiAl2 and Ti4Si composite target powers using an arc ion plating technique in a reactive gas mixture of high purity Ar and N2 during depositions. Ti-Al-Si-N films were nanocomposite consisting of nanosized (Ti,Al,Si)N crystallites embedded in an amorphous Si3N4/SiO2 matrix. The instrumental analyses revealed that the synthesized Ti-Al-Si-N film with Si content of 5.63 at.% was a nanocomposites consisting of nano-sized crystallites (5-7 nm in dia.) and a three dimensional thin layer of amorphous Si3N4 phase. The hardness of the Ti-Al-Si-N coatings also exhibited the maximum hardness value of about 47 GPa at a silicon content of ~5.63 at.% due to the microstructural change to a nanocomposite as well as the solid-solution hardening. The coating has a low friction coefficient of 0.55 at room temperature against an Inconel alloy ball. These excellent mechanical and tribological properties of the Ti-Al-Si-N coatings could help to improve the performance of machining and cutting tool applications.

초고진공 UBM 스퍼터링으로 제조된 라멜라 구조 TaN 박막의 연구 (Lamellar Structured TaN Thin Films by UHV UBM Sputtering)

  • 이기락;;;;이정중
    • 한국표면공학회지
    • /
    • 제38권2호
    • /
    • pp.65-68
    • /
    • 2005
  • The effect of crystal orientation and microstructure on the mechanical properties of $TaN_x$ was investigated. $TaN_x$ films were grown on $SiO_2$ substrates by ultrahigh vacuum unbalanced magnetron sputter deposition in mixed $Ar/N_2$ discharges at 20 mTorr (2.67 Pa) and at $350^{\circ}C$. Unlike the Ti-N system, in which TiN is the terminal phase, a large number of N-rich phases in the Ta-N system could lead to layers which had nano-sized lamella structure of coherent cubic and hexagonal phases, with a correct choice of nitrogen fraction in the sputtering mixture and ion irradiation energy during growth. The preferred orientations and the micro-structure of $TaN_x$ layers were controlled by varing incident ion energy $E_i\;(=30eV\~50eV)$ and nitrogen fractions $f_{N2}\;(=0.1\~0.15)$. $TaN_x$ layers were grown on (0002)-Ti underlayer as a crystallographic template in order to relieve the stress on the films. The structure of the $TaN_x$ film transformed from Bl-NaCl $\delta-TaN_x$ to lamellar structured Bl-NaCl $\delta-TaN_x$ + hexagonal $\varepsilon-TaN_x$ or Bl-NaCl $\delta-TaN_x$ + hexagonal $\gamma-TaN_x$ with increasing the ion energy at the same nitrogen fraction $f_{N2}$. The hardness of the films also increased by the structural change. At the nitrogen fraction of $0.1\~0.125$, the structure of the $TaN_x$ films was changed from $\delta-TaN_x\;+\;\varepsilon-TaN_x\;to\;\delta-TaN_x\;+\;\gamma-TaN_x$ with increasing the ion energy. However, at the nitrogen fraction of 0.15 the film structure did not change from $\delta-TaN_x\;+\;\varepsilon-TaN_x$ over the whole range of the applied ion energy. The hardness increased significantly from 21.1 GPa to 45.5 GPa with increasing the ion energy.

열산화법에 의한 티타늄 임플란트의 인산칼슘 결정의 형성 능력 증진 (Improvement of Calcium Phosphate Forming Ability of Titanium Implant by Thermal Oxidation Method)

  • 황규석;안준형;이선옥;윤연흠;강보안;오정선;김상복
    • 한국세라믹학회지
    • /
    • 제39권5호
    • /
    • pp.460-466
    • /
    • 2002
  • 티타늄 임플란트의 표면을 열산화법을 이용하여 티타늄의 표면 위에 생체활성을 갖는 $TiO_2$ 박막을 생성시켜 다양한 의료분야의 응용 가능성을 검토하였다. 시판되고 있는 순수한 티타늄 디스크를 세척 공정을 거친 후, 공기와 아르곤 분위기에서 500, 550, 600, 650, 700${\circ}C$의 온도로 10분간 각각 열산화 처리를 실시하였다. 열처리된 시편의 인산칼슘 결정의 형성 능력을 시험하기 위하여 36.5${\circ}C$의 Eagle's minimum essential medium 용액에서 15일 동안 침적시험을 행하였다. 침적하기 전과 후의 시편의 표면 형상과 표면 조성을 Field Emission-Scanning Electron Microscopy(FE-SEM)와 Energy Dispersive X-ray Spectrometry(EDS)로 각각 분석하였다. In vitro 시험에서 미세한 $TiO_2$ 결정이 생성된 박막의 표면에는 탄소가 함유된 인산칼슘 결정이 생성됨을 확인하였다.