• 제목/요약/키워드: Nano-sized grain

검색결과 57건 처리시간 0.047초

Development of Nano-sized WC Powder for Hardmetals

  • Yamamoto, Yoshiharu;Mizukami, Masahiko
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.342-343
    • /
    • 2006
  • In order to develop the nano-sized WC powder that improved the hardness of hardmetals, carbothermal reduction of WO3 by C was examined by using the thermogravimetric analysis. At the direct carburization reaction path of $WO_3{\rightarrow}WO_{2.72}{\rightarrow}WO_2{\rightarrow}W{\rightarrow}W_2C{\rightarrow}WC$, the nano-sized grain was generated at the reaction stage $WO_{2.72}$ to $WO_2$ and W. For trial production, the intermediate products which consists of metal and carbide phases obtained by the first heating has been carburized to the final WC powder. We succeeded in the development of the WC powder of about 70nm. In addition, the nano-sized WC powder in which the vanadium of the most effective grain growth inhibitor was uniformly dispersed was developed.

  • PDF

나노 텅스텐 카바이드 재료 내 입성장 억제제와 코발트의 영향 (Influence of Grain Growth Inhibitors and Co in Nano WC Materials)

  • 임형섭;허만규;김득중;윤대호
    • 한국세라믹학회지
    • /
    • 제51권5호
    • /
    • pp.442-446
    • /
    • 2014
  • Influences of Co and inhibitors from nano-sized WC materials were observed in the sintering process. VC and $Cr_3C_2$ were used as inhibitors. The crystal structure and surface images of sintered nano-sized WC materials, as functions of Co and inhibitors, were evaluated by XRD and FE-SEM analyses. The relative densities of sintered nano-sized WC materials did not change even with increased quantity of Co and increased temperature. The density of sintered nano-sized WC materials with inhibitors was lower than that of sintered nano-sized WC materials without inhibitors. No difference in hardness due to change of inhibitors was found.

나노급 도금공정을 위한 미세패턴 제어기술의 개발 (Development of control technique of nano-sized pattern for electroplating)

  • 이재홍;이병욱;이경호;김창교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 C
    • /
    • pp.1576-1578
    • /
    • 2004
  • The alumina membrane with nano sized pore was prepared from aluminum by anodic oxidation to apply for storage equipment, gas sensor and stamper. The pore size and cell size of the pores are controlled by anodic oxidation voltage. The alumina thickness was controlled by etching process using 0.2M $H_3PO_4$. The thickness of alumina on Si wafer was very accurately controlled by anodic oxidation time. Nickel with nano-sized grain was electroplated on the Au layer on silicon wafer. The fabricated pores on alumina membrane was the thickness of $7{\sim}10{\mu}m$ with straight nano-sized pore of 307${\sim}$120nm. The alumina by the etching process shows smooth surface. The size of Ni grain was 130nm and 250nm for 10mA/$cm^2$and 20mA/$cm^2$of electroplating currents, respectively.

  • PDF

NANO-SIZED COMPOSITE MATERIALS WITH HIGH PERFORMANCE

  • Niihara, N.;Choa, H.Y.;Sekino, T.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 1996년도 추계학술강연 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.6-6
    • /
    • 1996
  • Ceramic based nanocomposite, in which nano-sized ceramics and metals were dispersed within matrix grains and/or at grain boundaries, were successfully fabricated in the ceramic/cerarnic and ceramic/metal composite systems such as $Al_2O_3$/SiC, $Al_2O_3$/$Si_3N_4$, MgO/SiC, mullite/SiC, $Si_3N_4/SiC, $Si_3N_4$/B, $Al_2O_3$/W, $Al_2O_3$/Mo, $Al_2O_3$/Ni and $ZrO_2$/Mo systems. In these systems, the ceramiclceramic composites were fabricated from homogeneously mixed powders, powders with thin coatings of the second phases and amorphous precursor composite powders by usual powder metallurgical methods. The ceramiclmetal nanocomposites were prepared by combination of H2 reduction of metal oxides in the early stage of sinterings and usual powder metallurgical processes. The transmission electron microscopic observation for the $Al_2O_3$/SiC nanocomposite indicated that the second phases less than 70nm were mainly located within matrix grains and the larger particles were dispersed at the grain boundaries. The similar observation was also identified for other cerarnic/ceramic and ceramiclmetal nanocornposites. The striking findings in these nanocomposites were that mechanical properties were significantly improved by the nano-sized dispersion from 5 to 10 vol% even at high temperatures. For example, the improvement in hcture strength by 2 to 5 times and in creep resistance by 2 to 4 orders was observed not only for the ceramidceramic nanocomposites but also for the ceramiclmetal nanocomposites with only 5~01%se cond phase. The newly developed silicon nitride/boron nitride nanocomposites, in which nano-sized hexagonal BN particulates with low Young's modulus and fracture strength were dispersed mainly within matrix grains, gave also the strong improvement in fracture strength and thermal shock fracture resistance. In presentation, the process-rnicro/nanostructure-properties relationship will be presented in detail. The special emphasis will be placed on the understanding of the roles of nano-sized dispersions on mechanical properties.

  • PDF

절연파괴특성 향상을 위한 나노미세구조 (Ba0.7Ca0.3)TiO3 후막 제조 및 에너지 저장 특성 평가 (Improvement of Energy Storage Characteristics of (Ba0.7Ca0.3)TiO3 Thick Films by the Increase of Electric Breakdown Strength from Nano-Sized Grains)

  • 이주승;윤송현;임지호;박춘길;류정호;정대용
    • 한국재료학회지
    • /
    • 제29권2호
    • /
    • pp.73-78
    • /
    • 2019
  • Lead free $(Ba_{0.7}Ca_{0.3})TiO_3$ thick films with nano-sized grains are prepared using an aerosol deposition (AD) method at room temperature. The crystallinity of the AD thick films is enhanced by a post annealing process. Contrary to the sharp phase transition of bulk ceramics that has been reported, AD films show broad phase transition behaviors due to the nano-sized grains. The polarization-electric hysteresis loop of annealed AD film shows ferroelectric behaviors. With an increase in annealing temperature, the saturation polarization increases because of an increase in crystallinity. However, the remnant polarization and cohesive field are not affected by the annealing temperature. BCT AD thick films annealed at $700^{\circ}C/2h$ have an energy density of $1.84J/cm^3$ and a charge-discharge efficiency of 69.9 %, which is much higher than those of bulk ceramic with the same composition. The higher energy storage properties are likely due to the increase in the breakdown field from a large number of grain boundaries of nano-sized grains.

Cold Compaction Behavior of Nano and Micro Aluminum Powder under High Pressure

  • Kim, Dasom;Park, Kwangjae;Kim, Kyungju;Cho, Seungchan;Hirayama, Yusuke;Takagi, Kenta;Kwon, Hansang
    • Composites Research
    • /
    • 제32권3호
    • /
    • pp.141-147
    • /
    • 2019
  • In this study, micro-sized and nano-sized pure aluminum (Al) powders were compressed by unidirectional pressure at room temperature. Although neither type of Al bulk was heated, they had a high relative density and improved mechanical properties. The microstructural analysis showed a difference in the process of densification according to particle size, and the mechanical properties were measured by the Vickers hardness test and the nano indentation test. The Vickers hardness of micro Al and nano Al fabricated in this study was five to eight times that of ordinary Al. The grain refinement effect was considered to be one of the strengthening factors, and the Hall-Petch equation was introduced to analyze the improved hardness caused by grain size reduction. In addition, the effect of particle size and dispersion of aluminum oxide in the bulk were additionally considered. Based on these results, the present study facilitates the examination of the effect of particle size on the mechanical properties of compacted bulk fabricated by the powder metallurgy method and suggests the possible way to improve the mechanical properties of nano-crystalline powders.

나노표면 영역에서의 ECAP 변형된 알루미늄합금의 기계적 물성변화 측정 (Determination of Mechanical Properties of Equal Channel Angular Pressed Aluminum Alloys in Nano-surface Region)

  • 안성빈;김정석
    • 열처리공학회지
    • /
    • 제32권3호
    • /
    • pp.113-117
    • /
    • 2019
  • The effects of severe plastic deformation and heat treatment on the mechanical properties of Al 5052 and 6005 alloys were investigated using the metallurgical technique and nano-indentation technique in nano-surface region. Equal channel angular pressing (ECAP) was used to apply severe plastic deformation to the aluminum alloys in order to obtain fine grain sized materials. The elastic modulus was measured and interpreted in relation to the metallurgical observation. The elastic modulus increased after ECAP process due to evolution of the fine grains. However, the elastic modulus decreased after heat treatment due to generation of coarsened precipitates on the grain boundaries.

Microstructural Characterization of SS304 upon Various Shot Peening Treatments

  • He, Yinsheng;Li, Kejian;Cho, In Shik;Lee, Chang Soon;Park, In Gyu;Song, Jung-il;Yang, Cheol-Woong;Lee, Je-Hyun;Shin, Keesam
    • Applied Microscopy
    • /
    • 제45권3호
    • /
    • pp.155-169
    • /
    • 2015
  • Plastic deformation was introduced to the austenitic (${\gamma}$) stainless steel of SS304 by air blast shot peening, ultrasonic shot peening, and ultrasonic nanocrystalline surface modification. Various deformation structures were formed. The hardness, the deformation structure and the underlying grain refinement mechanism were investigated. In the deformed region, planar dislocation arrays and deformation twin (DT), the DT-DT intersection and ${\varepsilon}$-martensite structures, and ${\alpha}^{\prime}$-martensite were formed in the respective regions of low, medium, and high strain. The grain refinement mechanism is found to be closely related to the 1) sub-division of coarse grains by DT, shear bands and their intersection, and 2) formation of nano-sized ${\alpha}^{\prime}$-martensite due to the high plastic deformation.

기계 화학법에 의해 제작된 나노 LiCoO2 양극 분말의 구조 및 전기화학적 특성 (Structural and Electrochemical characterization of LiCoO2 Nano Cathode Powder Fabricated by Mechanochemical Process)

  • 최선희;김주선;윤영수
    • 한국세라믹학회지
    • /
    • 제41권1호
    • /
    • pp.86-91
    • /
    • 2004
  • 기계 화학법에 의해서 70-300nm 수준의 입도 분포를 갖는 $LiCoO_2$ 양극 분말을 제작하였다. $K_2SO_4$에 의하여 코팅 된 Li-Co 전구체는 약 $800^{\circ}C$에서 고온상 $LiCoO_2$로 결정화 되었으며, 이때 이 온도까지는 열분해 또는 서로 반응을 하지 않는 $K_2SO_4$의 영향에 의하여 분말의 입성장이 억제되어 나노 크기에 접근하는 입자를 얻을 수 있었고, 상대적으로 큰 표면 에너지에 기인하여 입자의 모양이 구형에 가깝게 형성되어 졌다. 합성돤 분말은 상용화 분말과 동일한 결정특성을 보였으나 , 투과전자현미경의 회절패턴 분석결과, 층상 뿐 아니라 부분적으로 정방정의 $LiCoO_2$ 상을 갖는 것으로 나타났다. 이러한 정방정은 주로 입자 표면에 존재하게 되어 Li의 확산을 용이하지 않게 하므로, 합성된 $LiCoO_2$ 분말은 그 크기가 나노에 접근함에도 불구하고 전체 용량 및 rate 용량이 상용화 분할보다 더 낮은 값을 보였다. 이상의 결과로부터 뛰어난 고출력 및 고성능의 전지 제작을 위하여 분말의 크기를 미세화하는 작업은 물론 입자 표면의 결정상이 잘 조절된 분말을 사용하는 것이 바람직함을 알 수 있다.