• Title/Summary/Keyword: Nano-scale

Search Result 1,072, Processing Time 0.027 seconds

Top-GaP 상부에 나노 크기의 Roughness 처리에 의한 AlGaInP 고휘도 LED의 휘도 향상 (Improvement of Brightness for AlGaInP High-brightness LEDs with Nano-scale Roughness on Top-GaP Surface)

  • 소순진;하헌성;박춘배
    • 한국전기전자재료학회논문지
    • /
    • 제21권1호
    • /
    • pp.68-72
    • /
    • 2008
  • AlGaInP high-brightness LEDs(HB-LEDs) have gained importance a variety of application operating in the red, orange, yellow and yellow-green wavelength. The light generated from inside LED chips should be emitted to the air through the surfaces of the chips. However, because of the differences between the semiconductor and air or epoxy's refractive index, some of the light was blocked so that caused lowering external quantum efficiency. In this study, nano-scale roughness on the top-GaP layer of AlGaInP epitaxial wafer was fabricated to improve' the brightness of AlGaInP LEDs. Nano-scale roughness was made by ICP dry etcher. Our AlGaInP LEDs with nano-scale roughness has higher brightness (about 28.5 %) than standard AlGaInP LEDs.

3D프린팅 활용 생체의료분야 기술동향 (Current Status of Biomedical Applications using 3D Printing Technology)

  • 박석희;박진호;이혜진;이낙규
    • 한국정밀공학회지
    • /
    • 제31권12호
    • /
    • pp.1067-1076
    • /
    • 2014
  • To date, biomedical application of three-dimensional (3D) printing technology remains one of the most important research topics and business targets. A wide range of approaches have been attempted using various 3D printing systems with general materials and specific biomaterials. In this review, we provide a brief overview of the biomedical applications using 3D printing techniques, such as surgical tool, medical device, prosthesis, and tissue engineering scaffold. Compared to the other applications of 3D printed products, the scaffold fabrication should be performed with careful selection of bio-functional materials. In particular, we describe how the biomaterials can be processed into 3D printed scaffold and applied to tissue engineering area.

Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials

  • Nejad, Mohammad Zamani;Hadi, Amin;Farajpour, Ali
    • Structural Engineering and Mechanics
    • /
    • 제63권2호
    • /
    • pp.161-169
    • /
    • 2017
  • In this paper, using consistent couple stress theory and Hamilton's principle, the free vibration analysis of Euler-Bernoulli nano-beams made of bi-directional functionally graded materials (BDFGMs) with small scale effects are investigated. To the best of the researchers' knowledge, in the literature, there is no study carried out into consistent couple-stress theory for free vibration analysis of BDFGM nanostructures with arbitrary functions. In addition, in order to obtain small scale effects, the consistent couple-stress theory is also applied. These models can degenerate into the classical models if the material length scale parameter is taken to be zero. In this theory, the couple-tensor is skew-symmetric by adopting the skew-symmetric part of the rotation gradients as the curvature tensor. The material properties except Poisson's ratio are assumed to be graded in both axial and thickness directions, which it can vary according to an arbitrary function. The governing equations are obtained using the concept of Hamilton principle. Generalized differential quadrature method (GDQM) is used to solve the governing equations for various boundary conditions to obtain the natural frequencies of BDFG nano-beam. At the end, some numerical results are presented to study the effects of material length scale parameter, and inhomogeneity constant on natural frequency.

Size dependent bending analysis of micro/nano sandwich structures based on a nonlocal high order theory

  • Rahmani, Omid;Deyhim, Soroush;Hosseini, S. Amir Hossein
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.371-388
    • /
    • 2018
  • In this paper, a new model based on nonlocal high order theory is proposed to study the size effect on the bending of nano-sandwich beams with a compliance core. In this model, in contrast to most of the available sandwich theories, no prior assumptions are made with respect to the displacement field in the core. Herein the displacement and the stress fields of the core are obtained through an elasticity solution. Equations of motion and boundary conditions for nano-sandwich beam are derived by using Hamilton's principle and an analytical solution is presented for simply supported nano-sandwich beam. The results are validated with previous studies in the literature. These results can be utilized in the study of nano-sensors and nano-actuators. The effect of nonlocal parameter, Young's modulus of the core and aspect ratio on the deflection of the nano-sandwich beam is investigated. It is concluded that by including the small-scale effects, the deflection of the skins is increased and by increasing the nonlocal parameter, the influence of small-scale effects on the deflections is increased.

FIB 신뢰성 평가를 위한 나노패턴의 설계 및 측정 (Design and Measurement of Nano-pattern for FIB Reliability Assessment)

  • 강현욱;이승재;조동우
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.24-29
    • /
    • 2005
  • Fm (Focused ion beam) system is one of the most important equipments for the nano-scale machining. Various researches have been performed, since it can etch the material and deposit 3-D structure with high-aspect-ratio in the nanometer scale. In spite of those researches, the definite method for the reliability of FIB system has not been reported. In this paper, we proposed the reliability assessment method through nano-pattern fabrication. In the fabricated nano-pattern, the characteristics of FIB system are included. Using this effect, we tried to assess the FIB reliability. First, we suggested reliability assessment items and nano-patterns. And, to know the suitableness of the proposed method, we fabricated several nano-patterns using Nova200(FEI Company) and SMI2050(SEIKO) which are FIB apparatuses. The fabricated nano-patterns are measured with SEM (Scanning Electron Microscope) and compared with designed dimensions. And the compared results showed that the proposed method is suitable for the assessment of FIB system reliability.

  • PDF

힌지 형태에 따른 나노 스테이지의 거동특성 (Behavioral Characteristics of Nano-Stages According to Hinge Structure)

  • 오현성;이성준;최수창;박정우;이득우
    • 한국공작기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.23-30
    • /
    • 2007
  • Nano-stages are used in many ultra-precision systems, such as scanning probe microscope(SPM), optical fiber aligners, ultra-precision cutting, measuring systems, and optical systems. It is difficult to find the solutions because the performances and characteristics of nano-scale motion stage are determined by various factors. To understand effects of nano-scale motion stage, three types of hinge structures were designed and manufactured. Each hinge structures were designed following with the results of simulation. And from the result of experiments, hysteresis, displacement, and accuracy were compared with each hinge structures.

나노스케일 표면돌기 간의 미세접촉에 대한 해석 (Analysis of Nano-contact Between Nano-asperities Using Atomic Force Microscopy)

  • 안효석;장동영
    • 한국생산제조학회지
    • /
    • 제18권4호
    • /
    • pp.369-374
    • /
    • 2009
  • In micro/nano-scale contacts in MEMS and NEMS, capillary and van der Waals forces generated around contacting micro-asperities significantly influence the performance of concerning device as they are closely related to adhesion and stiction of interacting surfaces. In this regard, it is of prime importance to accurately estimate the magnitude of surface forces so that an optimal solution for reducing friction and adhesion of micro/nano-surfaces may be obtained We introduced an effective method to calculate these surface forces based on topography information obtained from an atomic force microscope. This method was used to calculate surface forces generated in the contact interface formed between diamond-like carbon coating and $Si_3N_4$ ball. This method is shown to effectively demonstrate the influence of capillary force in the contact area, especially in humid atmosphere.

  • PDF

Nano 스케일 부품 제조용 In-Line 시스템의 특허동향 분석에 관한 연구 (Research for Patent Application Tendency in the In-Line System Manufacturing for Component of Nano Scale)

  • 김성민;고준빈;박희상
    • 한국정밀공학회지
    • /
    • 제25권6호
    • /
    • pp.150-158
    • /
    • 2008
  • This research considered that the significance of the NT(Nano Technology) which gradually increased the importance of it and investigated the technology development current situation of the Korea, U.S.A, Japanese, Europe. Therefore, in domestic and foreign, this research was widely used. It includes the tendency of the technology about processing methods using the ion beam and electron beam among the In-line system related technique field for the high efficiency energy beam application nano scale manufacturing components. The technique level of Korea, the international trend of technology and cooperation research present condition are dealt in. The information about the checked out of business of research and development of the country consistency and policy establishment try to be provided.

혼합 자기 조립 단분자막의 마이크로/나노 응착 및 마찰 특성 (Micro/Nano Adhesion and Friction Properties of Mixed Self-assembled Monolayer)

  • 윤의성;오현진;한흥구;공호성;장경영
    • Tribology and Lubricants
    • /
    • 제20권2호
    • /
    • pp.51-57
    • /
    • 2004
  • Micro/nano adhesion and friction properties of mixed self-assembled monolayer (SAM) with different chain length for MEMS application were experimentally studied. Many kinds of SAM having different spacer chains(C6, C10 and C18) and their mixtures (1:1) were deposited onto Si-wafer, where the deposited SAM resulted in the hydrophobic nature. The adhesion and friction properties between tip and SAM surfaces under nano scale applied load were measured using an atomic force microscope (AFM) and under micro scale applied load were measured using ball-on-flat type micro-tribotester. Surface roughness and water contact angles were measured with SPM (scanning probe microscope) and contact anglemeter. Results showed that water contact angles of mixed SAMs were similar to those of pure SAMs. The morphology of coating surface was roughened as mixing of SAM. Nano adhesion and nano friction decreased as increasing of the spacer chain length and mixing of SAM. Micro friction was decreased as increasing of the spacer chain length, but micro friction of mixed SAM showed the value between pure SAMs. Nano adhesion and friction mechanism of mixed SAM was proposed in a view of stiffness of spacer chain modified chemically and topographically.