• 제목/요약/키워드: Nano-positioning system

검색결과 42건 처리시간 0.031초

보이스 코일 모터를 이용한 미세 하중 및 위치 결정 기구의 개발 (Development of Small Loading and Positioning Device using VCM)

  • 권기환;오승환;조남규;윤준용
    • 한국정밀공학회지
    • /
    • 제20권12호
    • /
    • pp.64-72
    • /
    • 2003
  • This paper presents a small loading and positioning device using VCM (voice coil motor). The developed device consists of a VCM-based linear actuating system, a capacitance displacement sensor and a cantilever deflection sensing system. The trust force of the VCM proportional to applied current moves the column supported on two pairs of parallel leaf springs. The infinitesimal displacement of moved column is detected by capacitance displacement sensor with a resolution of 0.1nm and a repeatability of 1nm. Also, a micro cantilever with known stiffness (200N/m), which is mounted on the end of the column, is used as a force sensor to detect the load applied to a specimen. After the cantilever contacts with the specimen, the deflection of cantilever and the load applied to the specimen are measured by using an optical lever system which consists of a diode laser, a mirror and a PSD (position sensitive detector). In this paper, an experimental system was constructed and its actuator and sensing parts were tested and calibrated. Also, the constructed system was applied to the indentation experiment and the load-displacement curve of aluminum was obtained. Experimental results showed that the developed device can be applied for performing nano indentation.

3-Axis Gyro Sensor based on Servo Motion Control 장치의 성능평가기준 및 시험규격개발 (Development and Evaluation of 3-Axis Gyro Sensor based Servo motion control)

  • 이원부;장철순;김정국;박수홍
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 춘계학술대회
    • /
    • pp.627-630
    • /
    • 2009
  • 해상용 Multi Sensor Surveillance System은 다양한 기술의 복합체로서 본 과제에서 개발하고자하는 Gyro Sensor based Servo Motion Control 알고리즘은 선박의 6자유도운동을 분석하여 그에 대응할 수 있는 Motion Control 동요안정화제어장치를 개발하는 것이며, Nano Driving Precision Pan-Tilt/Gimbal System은 초정밀 초고속으로 감시용 디바이스를 적시에 정확한 동작을 수행하게 해주는 필수적인 장비이다. 최종적으로 개발하고자 하는 분야는 해상용 Nano Driving Multi Sensor Surveillance System 중 Nano Driving Precision Pan-Tilt/Gimbal의 최적설계 및 제작, 3-axis Gyro Sensor based Servo Motion Control 알고리즘 개발, 영상추적 Video Tracking Software 및 Hardware의 개발 및 각 세부주관에서 개발한 각각의 장비를 하나의 시스템으로 통합하는 시스템 Integration 및 시험인증으로 하나의 시스템을 완성 하였다.

  • PDF

MR Fluid를 이용한 정밀 모터 동력계 실험 장치 설계 (Design of Precision Motor Dynamometer System using MR Fluid)

  • 김주경;노창열;노명환;이응석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.313-317
    • /
    • 2005
  • Precision motor dynamometer is requiring for nano positioning control performance recently. Particularly, linear motor is using rapidly and the dynamometer needs is increasing. In this study, a precision control dynamometer is designed using MR (Magnetic Rheological) damper. The ultra precision motor system including the driver and controller is tested using the MR damper dynamometer. This dynamometer is able to measure torque for rotary motor or traction force with linear positioning accuracy for linear motor system.

  • PDF

Tele-operating System of Field Robot for Cultivation Management - Vision based Tele-operating System of Robotic Smart Farming for Fruit Harvesting and Cultivation Management

  • Ryuh, Youngsun;Noh, Kwang Mo;Park, Joon Gul
    • Journal of Biosystems Engineering
    • /
    • 제39권2호
    • /
    • pp.134-141
    • /
    • 2014
  • Purposes: This study was to validate the Robotic Smart Work System that can provides better working conditions and high productivity in unstructured environments like bio-industry, based on a tele-operation system for fruit harvesting with low cost 3-D positioning system on the laboratory level. Methods: For the Robotic Smart Work System for fruit harvesting and cultivation management in agriculture, a vision based tele-operating system and 3-D position information are key elements. This study proposed Robotic Smart Farming, an agricultural version of Robotic Smart Work System, and validated a 3-D position information system with a low cost omni camera and a laser marker system in the lab environment in order to get a vision based tele-operating system and 3-D position information. Results: The tasks like harvesting of the fixed target and cultivation management were accomplished even if there was a short time delay (30 ms ~ 100 ms). Although automatic conveyor works requiring accurate timing and positioning yield high productivity, the tele-operation with user's intuition will be more efficient in unstructured environments which require target selection and judgment. Conclusions: This system increased work efficiency and stability by considering ancillary intelligence as well as user's experience and knowhow. In addition, senior and female workers will operate the system easily because it can reduce labor and minimized user fatigue.

3 축 나노 스테이지 동특성 해석 및 개선 (Analysis and Improvement of Dynamics Characteristic of 3-axis Nano Stage)

  • 김충;이강녕;이동주;이문구;최형길;이석원;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.555-558
    • /
    • 2005
  • The precision positioning system requires robust design to obtain enough bandwidth. Therefore, The sub-resonance occurred by the disaccord of force center and mass center should be oppressed. And it is necessary to move the flexible mode to a higher frequency. In this paper, the 3-axis nano stage was proposed and dynamic characteristics was improved by design of experiments (DOE).

  • PDF

A Study on the Autonomous Navigation of Rovers for Mars Surface Exploration

  • Kim, Han-Dol;Kim, Byung-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.38.3-38
    • /
    • 2001
  • In the planetary surface exploration , micro-rovers or nano-rovers are very attractive choices for a surface exploration system providing mobility functions and other features required in the surface probe missions at small mass and relatively small cost. This paper surveys and summarizes the requirements for Mars exploration rovers in micro or nano scale and outlines the control concepts for navigation including the obstacle/hazard avoidance and the path planning. In this context, autonomous reaction capabilities are the key elements to control design in conjunction with the remote control schemes to deal with the significant signal propagation delays. Other navigation and control aspects such as the instrument fine positioning and the flip-over of the rovers are also briefly introduced. The current technical limitations of the micro- and nano-rovers are summarized.

  • PDF

Experiments of a Novel Magnetic Levitation Stage for Wide Area Movements

  • Jeon, Jeong-Woo;Caraiani, Mitica;Oh, Hyeon-Seok;Kim, Sung-Shin
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.558-563
    • /
    • 2012
  • In this paper, a novel planar type magnetic levitation system without other assistant devices is proposed and it can move with 6 degree of freedom (X, Y, Z, ${\theta}_X$, ${\theta}_Y$, ${\theta}_Z$) in wafer size as well as in nano scale positioning.The mover is composed with 2-D Halbach permanent magnet array and the stator is composed with $10{\times}10$ coil arrays.It was composed in laboratory and tested with short stroke (4 [mm]) and long stroke (160 [mm])movements. The errors of short movement test is [X, Y, Z, ${\theta}_X$, ${\theta}_Y$, ${\theta}_Z$]${\leq}$ [${\pm}200nm$, ${\pm}200nm$, ${\pm}250nm$, ${\pm}3urad$, ${\pm}2urad$, ${\pm}1urad$]The errors of long stroke movement test is [X, Y, Z, ${\theta}_X$, ${\theta}_Y$, ${\theta}_Z$]${\leq}$ [${\pm}200nm$, ${\pm}200nm$, ${\pm}250nm$, ${\pm}1.5urad$, ${\pm}2urad$, ${\pm}0.5urad$].

압전 구동기와 레버 링키지를 이용한 6 자유도 스테이지의 비선형성 평가에 기초한 정밀 위치 제어기의 설계 (Precision Position Controller Design for a 6-DOF Stage with Piezoelectric Actuators and Lever Linkages Based on Nonlinearity Estimation)

  • 문준희;이봉구
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1045-1053
    • /
    • 2009
  • Precision stages for 6-DOF positioning, actuated by PZT stacks, which are fed back by gap sensors and guided by flexure hinges, have enlarged their application territory in micro/nano manufacturing and measurement area. The precision stages inherently have such limitations as the nonlinearity between input and output in piezoelectric stacks, feedback signal noise in precision capacitive gap sensors and low material damping in precision kinematic linkages of mechanical flexures. To surmount these limitations, the precision stage is modeled with physics-based variables, which are identified by transient response correspondence, and a gain margin calculation algorithm using the Prandtl-Ishlinskii model and describing function is newly developed to assess system performance more precisely than linear controller design schemes. Based on such analyses, a precision positioning controller is designed. Excellent positioning accuracy with rapid settlement accomplished by the controller is shown in step responses of the closed-loop system.

Development of an Ultra Precision Hydrostatic Guideway Driven by a Coreless Linear Motor

  • Park Chun Hong;Oh Yoon Jin;Hwang Joo Ho;Lee Deug Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권2호
    • /
    • pp.55-60
    • /
    • 2005
  • In order to develop the hydrostatic guideways driven by a core less linear motor for ultra precision machine tools, a prototype of guideway is designed and tested. A coreless linear DC motor with a continuous force of 156 N and a laser scale with a resolution of 0.01 ㎛ are used in the system. Experimental analysis on the static stiffness, motion errors, positioning error and its repeatability, micro step response and velocity variation of the guideway are performed. The guideway shows infinite stiffness within 50 N applied load in the feed direction, and by the motion error compensation method using the Active Controlled Capillary, 0.08 ㎛ linear motion error and 0.1 arcsec angular motion error are acquired. The guideway also reveals 0.21 ㎛ positioning error and 0.09 ㎛ repeatability, and it shows stable responses following a 0.01 ㎛ resolution step command. The velocity variation of feeding system is less than 0.6 %. From these results, it is estimated that the hydrostatic guideway driven by a coreless linear motor is very useful for the ultra precision machine tools.

웨이블릿 네트워크를 이용한 압전 구동기의 견실제어 (Robust Control of Piezo Actuator using Wavelet Networks)

  • 양창관;임준홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.723-725
    • /
    • 2004
  • An iterative robust control design for PZT using Gaussian wavelet networks is proposed. A Gaussian wavelet network with accurate approximation capability is employed to approximate the nonlinear hysteresis dynamics of PZT systems by using an iterative control algorithm. Depending on the finite number of wavelet basis functions which results in unavoidable approximation errors, a robust control law is provided to guarantee the stability of the closed-loop nano positioning system. Finally, the effectiveness of the robust control approach is illustrated through comparative simulations on a PZT.

  • PDF