• 제목/요약/키워드: Nano-metallic particles

검색결과 43건 처리시간 0.016초

피복입자핵연료에서 증착조건이 탄화규소층의 특성에 미치는 영향 (Effect of Deposition Parameters on the Property of Silicon Carbide Layer in Coated Particle Nuclear Fuels)

  • 김연구;김원주;여승환;조문성
    • 한국분말재료학회지
    • /
    • 제23권5호
    • /
    • pp.384-390
    • /
    • 2016
  • Tri-isotropic (TRISO) coatings on zirconia surrogate beads are deposited using a fluidized-bed vapor deposition (FB-CVD) method. The silicon carbide layer is particularly important among the coated layers because it acts as a miniature pressure vessel and a diffusion barrier to gaseous and metallic fission products in the TRISO-coated particles. In this study, we obtain a nearly stoichiometric composition in the SiC layer coated at $1400^{\circ}C$, $1500^{\circ}C$, and $1400^{\circ}C$ with 20 vol.% methyltrichlorosilane (MTS), However, the composition of the SiC layer coated at $1300-1350^{\circ}C$ shows a difference from the stoichiometric ratio (1:1). The density decreases remarkably with decreasing SiC deposition temperature because of the nanosized pores. The high density of the SiC layer (${\geq}3.19g/cm^2$) easily obtained at $1500^{\circ}C$ and $1400^{\circ}C$ with 20 vol.% MTS did not change at an annealing temperature of $1900^{\circ}C$, simulating the reactor operating temperature. The evaluation of the mechanical properties is limited because of the inaccurate values of hardness and Young's modulus measured by the nano-indentation method.

졸-겔법에 의한 나노 사이즈 Au 미립자 분산 ZrO2 박막의 특성 (Properties of Nano-sized Au Particle Doped ZrO2 Thin Film Prepared by the Sol-gel Method)

  • 이승민;문종수
    • 한국세라믹학회지
    • /
    • 제40권12호
    • /
    • pp.1197-1201
    • /
    • 2003
  • 대기 중에서 침전이 생기지 않고 코팅에 적합한 나노크기 Au 미립자가 분산된 ZrO$_2$ 용액을 제조하여, 딥-코팅법으로 SiO$_2$ 유리기판 위에 박막을 제조했다. 이 박막을 열처리하여 열분석, 엑스선 회절분석, 분광분석, 원자력간 현미경, 주사전자현미경 및 투과전자현미경 관찰 등을 통하여 박막의 특성을 조사하였다. ZrO$_2$ 박막은 50$0^{\circ}C$에서 정방정상으로 결정전이가 관찰되었고, 박막의 두께는 약 100nm였다. 분산된 입자의 크기는 약 15∼40nm이며, 표면 거칠기는 0.84nm로 우수한 막질을 나타냈다. 그리고 Au 입자의 표면플라즈마 공명에 의한 흡수피크를 630∼670nm 파장범위에서 확인할 수 있었다.

저온 분사 코팅법으로 제조된 Cu/CNT 복합 코팅층의 미세조직 및 물성 연구 (A Study on the Microstructure and Physical Properties of Cold Sprayed Cu/CNT Composite Coating)

  • 권성희;박동용;이대열;어광준;이기안
    • 대한금속재료학회지
    • /
    • 제46권3호
    • /
    • pp.182-188
    • /
    • 2008
  • Carbon nanotubes(CNTs) have outstanding mechanical, thermal, and electrical properties. Thus, by placing nanotubes into appropriate matrix, it is postulated that the resulting composites will have enhanced properties. Cold spray can produce thick metal-based composite coatings with very high density, low oxygen content, and phase purity, which leads to excellent physical properties. In this study, we applied cold spray coating process for the consolidation of Cu/CNT composite powder. The precursor powder mixture, in which CNTs were filled into copper particles, was prepared to improve the distribution of the CNT in copper matrix. Pure copper coating was also conducted by cold spraying as a reference. Annealing heat treatment was applied to the coating to examine its effect on the properties of the composite coating. The hardness of Cu/CNT composite coating represented similar value to that of pure copper coating. It was importantly found that the electrical conductivity of the Cu/CNT composite coating significantly increased from 53% for the standard condition to almost 55% in the optimized condition, taking annealed ($500^{\circ}C/1hr$.) copper coating as a reference (100%). The thermal conductivity of Cu/CNT composite coating layer was higher than that of pure Cu coating. It was also found that the electrical and thermal conductivities of Cu/CNT composite could be improved through annealing heat treatment. The microstructural evolution of Cu/CNT coating was also investigated and related to the macroscopic properties.