• 제목/요약/키워드: Nano-level

검색결과 492건 처리시간 0.029초

Investigation of Job satisfaction, Organizational commitment and Factors of continuing work life for Nano-convergence employees

  • Lee, Hongki;Myoung, Sungmin
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.151-158
    • /
    • 2019
  • In this paper, we analyzed the relationship between employment stability, wage level, welfare system, working condition, job satisfaction and organizational commitment in order to find out ways to develop and competitiveness of the nano-convergence industries. Through this study, we conducted the possibility of deriving organizational commitment by job satisfaction which is given through employment stability, wage level, welfare system, and working condition for continuing their work life. In order to find relationships between each concepts, we used a multiple regression analysis with job satisfaction and commitment as dependent variable and employment stability, wage level, welfare system, and working condition as independent variables. Through this study, it was expected to increase the organizational commitment through the job satisfaction of the employees if a changing method of employees management is centered on some tasks suggested for the sound working condition and efficient utilization policies.

Temperature-dependent Photoluminescence Study on Aluminum-doped Nanocrystalline ZnO Thin Films by Sol-gel Dip-coating Method

  • Nam, Giwoong;Lee, Sang-Heon;So, Wonshoup;Yoon, Hyunsik;Park, Hyunggil;Kim, Young Gue;Kim, Soaram;Kim, Min Su;Jung, Jae Hak;Lee, Jewon;Kim, Yangsoo;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권1호
    • /
    • pp.95-98
    • /
    • 2013
  • The photoluminescence (PT) properties of Al-doped ZnO thin films grown by the sol-gel dip-coating method have been investigated. At 12 K, nine distinct PL peaks were observed at 2.037, 2.592, 2.832, 3.027, 3.177, 3.216, 3.260, 3.303, and 3.354 eV. The deep-level emissions (2.037, 2.592, 2.832, and 3.027 eV) were attributed to native defects. The near-band-edge (NBE) emission peaks at 3.354, 3.303, 3.260, 3.216, and 3.177 eV were attributed to the emission of the neutral-donor-bound excitons ($D^0X$), two-electron satellite (TES), free-to-neutral-acceptors (e,$A^0$), donor-acceptor pairs (DAP), and second-order longitudinal optical (2LO) phonon replicas of the TES (TES-2LO), respectively. According to Haynes' empirical rule, we calculated the energy of a free exciton (FX) to be 3.374 eV. The thermal activation energy for $D^0X$ in the nanocrystalline ZnO thin film was found to be ~25 meV, corresponding to the thermal dissociation energy required for $D^0X$ transitions.

Stoffenmanager nano 컨트롤 밴딩 도구 이해와 나노물질 합성 및 포장 공정 적용 연구 (Understanding and Application of Stoffenmanager Nano Tool into Synthesis and Packing Process of Nanomaterials)

  • 이나루;안정호
    • 한국산업보건학회지
    • /
    • 제25권1호
    • /
    • pp.95-103
    • /
    • 2015
  • Objectives: This study was conducted in order to better understand the conceptual model and Stoffenmanager nano module and apply it to the synthesis and packing processes of nanomaterials. Methods: Site visits were conducted to five nanomaterial production processes. Product and exposure variables were investigated in these workplaces. Hazard banding and exposure classification of the synthesis and packing processes of nanomaterials were conducted using documents and the website of Stoffenmanager Nano. Results: The five sites featured different products, packing tasks, ventilation and local exhaust, and others. The hazards for nano-nickel and copper were classified as E. The hazards for both fumed silica and indium tin oxide were classified as D. The hazard for spherical silica was classified as C. The exposure classes in the synthesis process of nanomaterials ranged from 2 through 4. The exposure classes in the packing process of nanomaterials ranged from 1 through 4. Conclusions: Application of Stoffenmanager nano to the synthesis and packing processes of nanomaterials helped to better understand the control level of the work environment and to suggest appropriate actions. The comparison of each process showed the effect of the production process and handling of solids and ventilation on exposure class.

나도 Imprinting 을 위한 몰드 제작에 관한 연구 (Nano-mold fabrication for imprinting lithography)

  • 이진형;임현우;김태곤;이승섭;박진구;이은규;김양선;한창수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1073-1077
    • /
    • 2003
  • This study aims to investigate the fabrication process of nano silicon mold using electron beam lithography (EBL) to generate the nanometer level patterns by nano-imprinting technology. the nano-patterned mold including 100mm pattern size has been fabricated by EBL with different doses ranged from 22 to 38 ${\mu}C/cm^2$ on silicon using the conventional polymethylmetharcylate(PMMA) resist. The silicon mold is fabricated with various patterns such as circles, rectangles, crosses, oblique lines and mixed forms, The effect of dosage on pattern density in EBL is discussed based on SEM (Scannning Electron Microscopy) analysis of fabricated molds. The mold surface is modified by hydrophobic fluorocarbon (FC) thin films to avoid the stiction during nano-imprinting process.

  • PDF

사출 성형에 의한 소수성 플라스틱 기판 제작 (Injection Molding of Hydrophobic Plastic Plates)

  • 유영은;이관희;윤재성;최두선;김선경
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1563-1565
    • /
    • 2008
  • Hydrophobic plastic plates employing nano surface features are injection molded using thermoplastic materials. A variotherm molding process is devised for filling the nano pores and releasing the molded nano features from the master. The size of the molded nano surface features are about 100nm in diameter and 200nm in height. The size of the molded plate is about 30mm x 30mm and the thickness is 1mm. As molding materials, Polypropylene, PMMA, COC and PC are employed, which are all typical commodity thermoplastic materials. The mold temperature(stamper temperature) is investigated as a major processing parameter for molding high aspect ratio nano surface features. Almost fully molded nano features are fabricated above a certain level of mold temperature depends on the employing material. The contact angles on the injection molded plates are measured to estimate the hydrophobicity and found to have higher contact angle up to 180% compared to the blank plate with no surface features.

  • PDF

Electrochemical Performance of Ti-Si Alloy Anode using Nodule Type Current Collector

  • Shin, Min-Seon;Park, Jung-Bae;Lee, Sung-Man
    • 전기화학회지
    • /
    • 제20권4호
    • /
    • pp.61-66
    • /
    • 2017
  • The cycle performance of Ti-Si alloy anode material for Li-ion batteries has been investigated as a function of loading level of electrode using a nodule type of substrate, in which the current collector of flat foil is also used for comparison. The Ti-Si alloy powders are prepared by mechanical alloying method. The electrodes with the nodule type of current collector exhibit enhanced cycling performance compared to those using the flat foil because the alloy particles are more strongly adhered to substrate and the stress caused by lithiation and delithiation reaction can be effectively relaxed by nodule-type morphology. It appears, however, that the cycle performance is critically dependent on the loading level of electrode, even when the nodule type of current collector is applied. With high loading level, cracks are initiated at surface of electrode due to a steep stress gradient through the electrode thickness during cycling, leading to capacity fading.

나노구조 표면에 관한 문헌고찰 (A Literature Review on Nano-Modified Implant Surfaces)

  • 박고운;차민상;김대곤;박찬진;조리라
    • 구강회복응용과학지
    • /
    • 제29권2호
    • /
    • pp.141-151
    • /
    • 2013
  • 티타늄 산화막을 나노단위에서 변형시키는 방법은 다공성 표면을 강화하는 내부적 접근과 나노입자를 피복하는 외부적 접근으로 나눌 수 있다. 나노표면은 나노튜브, 나노피트, 나노노듈 및 다형구조 등 다양한 형태를 지닌다. 형성방법 및 형성재료에 따라 다른 표면이 생성되지만, 현재까지 표준화된 형성방법은 없다. 나노표면을 분석해 보면 마이크론 단위의 표면구조에는 영향을 미치지 않으며 전기화학적으로 안정적이다. 나노표면은 세포독성이 거의 없으며 조골세포의 증식과 분화를 모두 촉진하고, 섬유모세포의 증식을 저해하여 연조직 개재를 감소시키는 효과를 가진다. 또한 세포 및 단백질과 유사한 크기 및 형태를 가지기 때문에 조직과의 친화성이 우수하여 골유착을 증진시킨다. 하지만 그 작용이 미치는 범위는 극히 제한되어 있기 때문에 골조직과의 거리가 있는 경우에는 효과가 미미하다. 마이크론 단위의 표면과는 달리 나노표면은 광촉매효과로 인한 항균작용을 가지지만 지속시간이 짧아 실제 임상에서의 적용효과는 의문시 된다. 하지만 마이크론 단위의 표면거칠기가 가지는 단점을 배제할 수 있어 다양한 가능성을 가지기 때문에 더 많은 연구가 필요하다.

반응성 이온 식각법에 의해 제작된 탄소나노튜브 전극의 전기화학적 특성 (Electrochemical Properties of Individual Carbon Nanotube Fabricated by Reactive Ion Etching)

  • 황숙현;최현광;김상효;한영문;전민현
    • 한국재료학회지
    • /
    • 제21권2호
    • /
    • pp.89-94
    • /
    • 2011
  • In this work, fabrication and electrochemical analysis of an individual multi-walled carbon nanotube (MWNT) electrode are carried out to confirm the applicability of electrochemical sensing. The reactive ion etching (RIE) process is performed to obtain sensitive MWNT electrodes. In order to characterize the electrochemical properties, an individual MWNT is cut by RIE under oxygen atmosphere into two segments with a small gap: one segment is applied to the working electrode and the other is used as a counter electrode. Electrical contacts are provided by nanolithography to the two MWNT electrodes. Dopamine is specially selected as an analytical molecule for electrochemical detection using the MWNT electrode. Using a quasi-Ag/AgCl reference electrode, which was fabricated by us, the nanoelectrodes are subjected to cyclic voltammetry inside a $2{\mu}L$ droplet of dopamine solution. In the experiment, RIE power is found to be a more effective parameter to cut an individual MWNT and to generate "broken" open state, which shows good electrochemical performance, at the end of the MWNT segments. It is found that the pico-molar level concentration of analytical molecules can be determined by an MWNT electrode. We believe that the MWNT electrode fabricated and treated by RIE has the potential for use in high-sensitivity electrochemical measurement and that the proposed scheme can contribute to device miniaturization.

나노 은을 이용한 전자파 차폐 직물이 뇌파에 미치는 영향 (A Study on the Effects of Electroencephalogram of Blocking Electromagnetic Wave Materials by useing the Nano Silver)

  • 이수정;이태일
    • 한국의류산업학회지
    • /
    • 제6권6호
    • /
    • pp.810-814
    • /
    • 2004
  • This study is one of the fundamental researches for the development of future smart clothing and textile products using silver(Ag) nano powder. Our study was focused on the blocking or insulating effects of nano-processed textiles from electromagnetic waves. Also, for the surveying of the actual effect to human body, we measure the variation of electroencephalogram which is an indication of human physical symptoms. Among various textiles in this experiment, nano silver processed case has shown the best blocking performance from the electromagnetic waves, which decreases depending on the distance. As a reference model of working environment, we setup the visual stimuli object on the computer that is a source of electromagnetic wave. The power spectrum distribution and the incidence of electroencephalogram was measured. The analysed data has shown that, with nano-processed textiles, ${\beta}$ wave does not appear very often where ${\beta}$ wave appears only to illustrate the stable states of human's body. However, as for the materials without nano processing, the ratio of ${\gamma}$ waves in the total level of electroencephalogram becomes higher in spite of short exposure to visual stimuli in work environment, which shows that the worker becomes stressed. The ${\beta}$ wave electroencephalogram of all materials is drawn in calcarine fissure of occipital lobe to show the convergent distribution, and stronger with block-processed Nano Silver Silk(NSS). The study based on the potential risks of human diseases such as physical fatigue by electromagnetic waves, and has shown that the application of Nano Silver textile for human uses require a proper particle size of it which would not penetrate cellular tissues, and a proper binder and binding treatment for it. However, it is highly required for back-up researches to verify various aspects in applying nano silver to textile products.

Effects of Doping with Al, Ga, and In on Structural and Optical Properties of ZnO Nanorods Grown by Hydrothermal Method

  • Kim, Soaram;Nam, Giwoong;Park, Hyunggil;Yoon, Hyunsik;Lee, Sang-Heon;Kim, Jong Su;Kim, Jin Soo;Kim, Do Yeob;Kim, Sung-O;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1205-1211
    • /
    • 2013
  • The structural and optical properties of the ZnO, Al-doped ZnO, Ga-doped ZnO, and In-doped ZnO nanorods were investigated using field-emission scanning electron microscopy, X-ray diffraction, photoluminescence (PL) and ultraviolet-visible spectroscopy. All the nanorods grew with good alignment on the ZnO seed layers and the ZnO nanorod dimensions could be controlled by the addition of the various dopants. For instance, the diameter of the nanorods decreased with increasing atomic number of the dopants. The ratio between the near-band-edge emission (NBE) and the deep-level emission (DLE) intensities ($I_{NBE}/I_{DLE}$) obtained by PL gradually decreased because the DLE intensity from the nanorods gradually increased with increase in the atomic number of the dopants. We found that the dopants affected the structural and optical properties of the ZnO nanorods including their dimensions, lattice constants, residual stresses, bond lengths, PL properties, transmittance values, optical band gaps, and Urbach energies.