• Title/Summary/Keyword: Nano-gold

Search Result 156, Processing Time 0.03 seconds

Synthesis of Colloidal Gold and Application of Skin Care Cosmetics (콜로이달 골드 합성 및 스킨케어 화장품 응용)

  • Kim, Dae-Seop;Jeong, Seung-Hyun;Kim, In-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.1325-1334
    • /
    • 2021
  • This study reports the development of a manufacturing method of synthesizing colloidal gold using catalysts available for cosmetics and an anti-aging ampoule with skin improvement effects using it. Nano-colloidal gold was synthesized by using ascorbic acid and sodium borohydride as a reducing catalyst in hydrogen tetrachloroaurate tetrahydrate. It was confirmed that the particles became smaller as the mass of the content of ascorbic acid, which is a catalyst, increased. On the other hand, as the mass of sodium borohydride increased, the particle size tended to increase. In order to control the colloidal gold reaction rate, particles having 100 to 500 nm of a particle diameter distribution could be obtained using xanthan gum and hydroxyethylcellulose. The optimal synthesis conditions could be obtained by reacting for 1 to 4 hours at 18℃, a reduced pressure state of 20 to 75 mmHg, a stirring speed of 10~50 rpm. The synthesized colloidal gold had a unique smell of dark pink, pH = 5.5, specific gravity of 1.0032, and viscosity of 80 to 310 cps. As an application of skin care cosmetics, anti-aging ampoule has been developed, and it is expected to be used for various prescriptions and formulations using it.

Coating gold nanoparticles to a glass substrate by spin-coat method as a surface-enhanced raman spectroscopy (SERS) plasmonic sensor to detect molecular vibrations of bisphenol-a (BPA)

  • Eskandari, Vahid;Hadi, Amin;Sahbafar, Hossein
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.417-426
    • /
    • 2022
  • Bisphenol A (BPA) is one of the chemicals used in monomer epoxy resins and polycarbonate plastics. The surface-enhanced Raman spectroscopy (SERS) method is precise for identifying biological materials and chemicals at considerably low concentrations. In the present article, the substrates coated with gold nanoparticles have been studied to identify BPA and control the diseases caused by this chemical. Gold nanoparticles were made by a simple chemical method and by applying gold salt and trisodium citrate dihydrate reductant and were coated on glass substrates by a spin-coat approach. Finally, using these SERS substrates as plasmonic sensors and Raman spectroscopy, the Raman signal enhancement of molecular vibrations of BPA was investigated. Then, the molecular vibrations of BPA in some consumer goods were identified by applying SERS substrates as plasmonic sensors and Raman spectroscopy. The fabricated gold nanoparticles are spherical and quasi-spherical nanoparticles that confirm the formation of gold nanoparticles by observing the plasmon resonance peak at 517 nm. Active SERS substrates have been coated with nanoparticles, which improve the Raman signal. The enhancement of the Raman signal is due to the resonance of the surface plasmons of the nanoparticles. Active SERS substrates, gold nanoparticles deposited on a glass substrate, were fabricated for the detection of BPA; a detection limit of 10-9 M and a relative standard deviation (RSD) equal to 4.17% were obtained for ten repeated measurements in the concentration of 10-9 M. Hence, the Raman results indicate that the active SERS substrates, gold nanoparticles for the detection of BPA along with the developed methods, show promising results for SERS-based studies and can lead to the development of microsensors. In Raman spectroscopy, SERS active substrate coated with gold nanoparticles are of interest, which is larger than gold particles due to the resonance of the surface plasmons of gold nanoparticles and the scattering of light from gold particles since the Raman signal amplifies the molecular vibrations of BPA. By decreasing the concentration of BPA deposited on the active SERS substrates, the Raman signal is also weakened due to the reduction of molecular vibrations. By increasing the surface roughness of the active SERS substrates, the Raman signal can be enhanced due to increased light scattering from rough centers, which are the same as the larger particles created throughout the deposition by the spin-coat method, and as a result, they enhance the signal by increasing the scattering of light. Then, the molecular vibrations of BPA were identified in some consumer goods by SERS substrates as plasmonic sensors and Raman spectroscopy.

Analysis of Sensing Mechanisms in a Gold-Decorated SWNT Network DNA Biosensor

  • Ahn, Jinhong;Kim, Seok Hyang;Lim, Jaeheung;Ko, Jung Woo;Park, Chan Hyeong;Park, Young June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.153-162
    • /
    • 2014
  • We show that carbon nanotube sensors with gold particles on the single-walled carbon nanotube (SWNT) network operate as Schottky barrier transistors, in which transistor action occurs primarily by varying the resistance of Au-SWNT junction rather than the channel conductance modulation. Transistor characteristics are calculated for the statistically simplified geometries, and the sensing mechanisms are analyzed by comparing the simulation results of the MOSFET model and Schottky junction model with the experimental data. We demonstrated that the semiconductor MOSFET effect cannot explain the experimental phenomena such as the very low limit of detection (LOD) and the logarithmic dependence of sensitivity to the DNA concentration. By building an asymmetric concentric-electrode model which consists of serially-connected segments of CNTFETs and Schottky diodes, we found that for a proper explanation of the experimental data, the work function shifts should be ~ 0.1 eV for 100 pM DNA concentration and ~ 0.4 eV for $100{\mu}M$.

Characteristic Analysis of Nano-hole Array Optical Filter having Psychological Protection for Color Recognition (색 인지에 대한 심리보호효과를 가지는 나노홀어레이 광학필터 특성 분석)

  • Kang, Tae Young;Ahn, Heesang;Shin, Dong-Myeong;Hong, Suck Won;Kim, Kyujung;Lee, Donghoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.95-100
    • /
    • 2016
  • We suggest and simulate an optical filter that a red wavelength range cannot transmit to protect the psychological stress that originates from the cognition of red color in emergency medical technicians. When a nanohole hexagonal array is fabricated on gold film using Anodic Aluminum Oxide (AAO), the blocked wavelength can be tuned by the hole diameter and film thickness. The characteristic of the transmittance for normal incident white light is simulated with Finite Element Method (FEM) in the MATLAB platform. Although the transmittance of the overall wavelength is reduced by 50% by the gold film, the transmittance of the red wavelength range is decreased by over 87%.

Study on Tribological Behavior of Porous Anodic Aluminum Oxide with respect to Surface Coating (다공성 산화알루미늄의 표면코팅에 따른 트라이볼로지적 특성연구)

  • Kim, Young-Jin;Kim, Hyun-Joon
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.275-281
    • /
    • 2017
  • In this work, we have fabricated anodic aluminum oxide (AAO) with ordered nanoscale porosity through an anodization process. We deposited gold and nano-organic thin films on the porous AAO surface to protect its structure and reduce friction. We investigated the tribological characteristics of the porous AAO with respect to the protective surface coatings using tribometers. While investigating the frictional characteristics of the samples by applying normal forces of the order of micro-Newton, we observed that AAO without a protective coating exhibits the highest friction coefficient. In the presence of protective surface coatings, the friction coefficient decreases significantly. We applied normal forces of the order of milli-Newton during the tribotests to investigate the wear characteristics of AAO, and observed that AAO without protective surface coatings experiences severe damage due to the brittle nature of the oxide layer. We observed the presence of several pieces of fractured particles in the wear track; these fractured particles lead to an increase in the friction. However, by using surface coatings such as gold thin films and nano-organic thin films, we confirmed that the thin films with nanoscale thickness protect the AAO surface without exhibiting significant wear tracks and maintain a stable friction coefficient for the duration of the tribotests.

One- and Two-Dimensional Arrangement of DNA-Templated Gold Nanoparticle Chains using Plasma Ashing Method

  • Kim, Hyung-Jin;Hong, Byung-You
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.291-291
    • /
    • 2010
  • Electron-beam lithography (EBL) process is a versatile tool for a fabrication of nanostructures, nano-gap electrodes or molecular arrays and its application to nano-device. However, it is not appropriate for the fabrication of sub-5 nm features and high-aspect-ratio nanostructures due to the limitation of EBL resolution. In this study, the precision assembly and alignment of DNA molecule was demonstrated using sub-5 nm nanostructures formed by a combination of conventional electron-beam lithography (EBL) and plasma ashing processes. The ma-N2401 (EBL-negative tone resist) nanostructures were patterned by EBL process at a dose of $200\;{\mu}C/cm2$ with 25 kV and then were ashed by a chemical dry etcher at microwave (${\mu}W$) power of 50 W. We confirmed that this method was useful for sub-5 nm patterning of high-aspect-ratio nanostructures. In addition, we also utilized the surface-patterning technique to create the molecular pattern comprised 3-(aminopropyl) triethoxysilane (APS) as adhesion layer and octadecyltrichlorosilane (OTS) as passivation layer. DNA-templated gold nanoparticle chain was attached only on the sub-5 nm APS region defined by the amine groups, but not on surface of the OTS region. We were able to obtain DNA molecules aligned selectively on a SiO2/Si substrate using atomic force microscopy (AFM).

  • PDF

Surface Modification of Gold Electrode Using Nafion Polymer and Its Application as an Impedance Sensor for Measuring Osmotic Pressure (나피온 폴리머를 이용한 금 전극의 표면 개질 및 이의 삼투압 측정용 임피던스 센서 응용)

  • Min Sik, Kil;Min Jae, Kim;Jo Hee, Yoon;Jinwu, Jang;Kyoung G., Lee;Bong Gill, Choi
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.9-14
    • /
    • 2023
  • In this work, we developed a Nafion polymer-coated impedance sensor with two gold electrode configurations to measure the ion concentration in solution samples. The gold electrodes were fabricated through the sputtering process, followed by surface modification using Nafion polymer. The resulting sensors enable the prevention of the polarization phenomenon on the electrode surface, resulting in stable measurement of electrochemical signals. Spectroscopy and scanning electron microscopy measurements revealed that the thin film of Nafion was coated uniformly onto the surface of the gold electrode. The Nafion-coated sensor exhibited more stable impedance signals than the conventional gold electrode. It showed a highly reliable calibration curve (R2 = 0.983) of the impedance sensor using a standard sodium chloride solution. In addition, a comparison experiment between the impedance sensor and a commercial conductivity sensor was performed to measure the ion concentration of artificial tears, showing similar results for the two sensors.

A Study on Glucose Sensing Measured by Catalyst Containing Multiple Layers of Glucose Oxidase and Gold Nano Rod (글루코스산화효소와 금나노로드 입자의 다층막으로 구성된 촉매를 이용하여 측정한 글루코스 센싱에 대한 연구)

  • Chung, Yong-Jin;Hyun, Kyuhwan;Han, Sang Won;Min, Ji Hong;Chun, Seung-Kyu;Koh, Won-Gun;Kwon, Yongchai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.179-183
    • /
    • 2015
  • In this study, we propose a catalyst structure including enzyme and metal nano rod for glucose sensing. In the catalyst structure, glucose oxidase (GOx) and gold nano rod (GNR) are alternatingly immobilized on the surface of carbon nanotube (CNT), while poly(ethyleneimine) (PEI) is inserted in between the GOx and GNR to fortify their bonding and give them opposite polarization ($[GOx/GNR]_nPEI/CNT$). To investigate the impact of $[GOx/GNR]_nPEI/CNT$ on glucose sensing, some electrochemical measurements are carried out. Initially, their optimal layer is determined by using cyclic voltammogram and as a result of that, it is proved that $[GOx/GNR/PEI]_2/CNT$ is the best layer. Its glucose sensitivity is $13.315{\mu}AmM^{-1}cm^{-2}$. When it comes to the redox reaction mechanism of flavin adenine dinucleotide (FAD) within $[GOx/GNR/PEI]_2/CNT$, (i) oxygen plays a mediator role in moving electrons and protons generated by glucose oxidation reaction to those for the reduction reaction of FAD and (ii) glucose does not affect the redox reaction of FAD. It is also recognized that the $[GOx/GNR/PEI]_3/CNT$ is limited to the surface reaction and the reaction is quasi-reversible.