• Title/Summary/Keyword: Nano-gold

Search Result 155, Processing Time 0.022 seconds

Fabrication Process of a Nano-precision Polydimethylsiloxane Replica using Vacuum Pressure-Difference Technique (진공 압력차이법에 의한 나노 정밀도를 가지는 폴리디메틸실록산 형상복제)

  • 박상후;임태우;양동열;공홍진;이광섭
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.305-313
    • /
    • 2004
  • A vacuum pressure-difference technique for making a nano-precision replica is investigated for various applications. Master patterns for replication were fabricated using a nano-replication printing (nRP) process. In the nRP process, any picture and pattern can be replicated from a bitmap figure file in the range of several micrometers with resolution of 200nm. A liquid-state monomer is solidified by two-photon absorption (TPA) induced by a femto-second laser according to a voxel matrix scanning. After polymerization, the remaining monomers were removed simply by using ethanol droplets. And then, a gold metal layer of about 30nm thickness was deposited on the fabricated master patterns prior to polydimethylsiloxane molding for preventing bonding between the master and the polydimethylsiloxane mold. A few gold particles attached on the polydimethylsiloxane stamp during detaching process were removed by a gold selecting etchant. After fabricating the polydimethylsiloxane mold, a nano-precision polydimethylsiloxane replica was reproduced. More precise replica was produced by the vacuum pressure-difference technique that is proposed in this paper. Through this study, direct patterning on a glass plate, replicating a polydimethylsiloxane mold, and reproducing polydimethylsiloxane replica are demonstrated with a vacuum pressure-difference technique for various micro/nano-applications.

Directly Nano-precision Feature Patterning on Thin Metal Layer using Top-down Building Approach in nRP Process (나노 복화공정의 역방향 적층법을 이용한 직접적 나노패턴 생성에 관한 연구)

  • 박상후;임태우;양동열;공홍진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.153-159
    • /
    • 2004
  • In this study, a new process to pattern directly on a thin metal layer using improved nano replication printing (nRP) process is suggested to evaluate the possibilities of fabricating a stamp for nano-imprinting. In the nRP process, any figure can be replicated from a bitmap figure file in the range of several micrometers with nano-scaled details. In the process, liquid-state resins are polymerized by two-photon absorption which is induced by femto-second laser. A thin gold layer was sputtered on a glass plate and then, designed patterns or figures were developed on the gold layer by newly developed top-down building approach. Generally, stamps fur nano-imprinting have been fabricated by using the costly electron-beam lithography process combined with a reactive ion-etching process. Through this study, the effectiveness of the improved nRP process is evaluated to make a stamp with the resolution of around 200nm with reduced cost.

Fabrication of Nanopatterns for Biochip by Nanoimprint Lithography (나노임프린트를 이용한 바이오칩용 나노 패턴 제작)

  • Choi, Ho-Gil;Kim, Soon-Joong;Oh, Byung-Ken;Choi, Jeong-Woo
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.433-437
    • /
    • 2007
  • A constant desire has been to fabricate nanopatterns for biochip and the Ultraviolet-nano imprint lithography (UV-NIL) is promising technology especially compared with thermal type in view of cost effectiveness. By using this method, nano-scale to micro-scale structures also called nanopore structures can be fabricated on large scale gold plate at normal conditions such as room temperature or low pressure which is not possible in thermal type lithography. One of the most important methods in fabricating biochips, immobilizing, was processed successfully by using this technology. That means immobilizing proteins only on the nanopore structures based on gold, not on hardened resin by UV is now possible by utilizing this method. So this selective nano-patterning process of protein can be useful method fabricating nanoscale protein chip.

Characterization and Antioxidant Activity of Gold Nanoparticles Synthesized using Bambusae Caulis in Taeniam extract (죽여 추출물로 합성한 금 나노 입자의 특성과 항산화 활성)

  • Park, Jin Oh;Park, Geuntae
    • Journal of Environmental Science International
    • /
    • v.26 no.2
    • /
    • pp.239-248
    • /
    • 2017
  • Green synthesis of gold nanoparticles(GNPs) considered more ecofriendly and cost effective than other chemical methods use of dangerous reagents and solvents, improved material and energy efficiency and enhanced design of non-toxic products. In this study, we developed a green synthesis method for using Caulis in Taeniam (BCT). BCT were characterized by UV-vis, Zetasizer, TEM, XRD, and FTIR. The antioxidant activity of BCT was determined by DPPH and ABTS radical-scavenging assays, and heme oxygenase-1 induction in RAW 264.7 macrophages. The resulting BCT appeared spherical with an average diameter of 67.171.39 nm The aAntioxidant activity was increased in a dependent manner. To conclude, the green synthesis of BCT-GNPs was successful, and it appers to be useful in the for future applications.

Protein-Coating Evaluation Method of Colloidal Gold Nanoparticles (콜로이드 골드 나노입자의 단백질 수송성 평가법)

  • Kim, Mi-Young;Noh, Sang-Myoung;Kim, Jung-Mogg;Choi, Han-Gon;Kim, Jung-Ae;Oh, Yu-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.6
    • /
    • pp.465-469
    • /
    • 2004
  • Colloidal gold nanoparticles might be of use as nano scale delivery systems of various therapeutic materials in the future. Recent studies have reported the feasibility of colloidal gold nanoparticles as gene delivery systems or protein delivery systems. In this study, we aimed to develop a short-step method useful for screening the optimal coating conditions of colloidal gold nanoparticles with proteins. We observed that colloidal gold nanoparticles have properties of changing its unique color when they were exposed to NaCl solution. Taking advantage of the color changing properties of colloidal gold nanoparticles, we applied the color testing method of colloidal gold nanoparticles solutions for evaluating the protein coating nature. Using bovine serum albumin as a model protein, we tested the protein coating of colloidal gold nanoparticles via the color change upon NaCl addition. The optimal coating concentration and coating conditions of colloidal gold nanoparticles with bovine serum albumin were fixed using the color testing methods. We suggest that the color testing method might be applied to optimize the coating condition of colloidal gold nanoparticles with other therapeutic proteins.

Synthesis of Gold Nanoparticles by Electro-reduction Method and Their Application as an Electro-hyperthermia System

  • Yoon, Young Il;Kim, Kwang-Soo;Kwon, Yong-Soo;Cho, Hee-Sang;Lee, Hak Jong;Yoon, Chang-Jin;Yoon, Tae-Jong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1806-1808
    • /
    • 2014
  • We report the successful preparation of gold nanoparticles (Au NPs) using a novel electroreduction process, which is simple, fast, and environmentally friendly (toxic chemicals such as strong reducing agents are not required). Our process allows for the mass production of Au NPs and adequate particle size control. The Au NPs prepared show high biocompatibility and are non-toxic to healthy human cells. By applying radio-frequency (RF) ablation, we monitored the electro-hyperthermia effect of the Au NPs at different RFs. The Au NPs exhibit a fast increase in temperature to $55^{\circ}C$ within 5 min during the application of an RF of 13 MHz. This temperature rise is sufficient to promote apoptosis through thermal stress. Our work suggests that the selective Au NP-mediated electro-hyperthermia therapy for tumor cells under an RF of 13 MHz has great potential as a clinical treatment for specific tumor ablation.

Biogenic Nano-Synthesis; towards the Efficient Production of the Biocompatible Gold Nanoparticles

  • Ghodake, Gajanan;Eom, Chi-Yong;Kim, Si-Wouk;Jin, Eon-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2771-2775
    • /
    • 2010
  • We present a rapid biogenic method for the production of nanoscale gold particles using pear extract. The formation and stability of pear-derived gold nanoparticles (Pear-AuNPs) were monitored by ultraviolet-visible spectroscopy. Their morphology, elemental composition and crystalline phase were determined by transmission electron microscopy, energy-dispersive X-ray spectroscopy and selected area electron diffraction. The average core size of crystalline Pear-AuNPs was in the range of $10{\pm}5\;nm$ and the observed morphology was spherical. The X-ray photoelectron spectrum showed a strong peak for the pure 'Au' phase. The circular dichroism spectrum indicated the natural capping ability of the pear extract, which generated peptide-gold nanoparticles. These nanoparticles were stable in aqueous solution for two months. A cell viability assay of Pear-AuNPs showed biocompatibility with human embryonic kidney 293 cells. Accordingly, this eco-friendly process for the bio-mimetic production of Pear-AuNPs is nontoxic in nature; consequently, it will find potential application in nano-biotechnology.

Fabrication and Characterization of Polystyrene/Gold Nanoparticle Composite Nanofibers

  • Kim, Jung-Kil;Ahn, Hee-Joon
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.163-168
    • /
    • 2008
  • Polystyrene/gold nanoparticle (PS/AuNP) composite fibers were fabricated using an electrospinning technique. Transmission electron microscopy (TEM) showed that the diameters of the naphthalenethiol-capped gold nanoparticles (prior to incorporation into the PS fibers) ranged from 2 to 5 nm. UV-vis spectroscopy revealed the surface plasmon peaks of the gold nanoparticles centered at approximately 512 nm, indicating that nano-sized Au particles are well-dispersed in solution. This was consistent with the TEM observations. The electrospun nanofibers of PS/AuNP composites were approximately 60-3,000 nm in diameter. The surface morphology of the PS/AuNP composite and the dispersability of the Au nanoparticles inside of PS after electrospinning process were investigated by SEM and TEM. The thermal behavior of the pure PS and PS/AuNP nanocomposites and fibers were examined by DSC.