• Title/Summary/Keyword: Nano-composite materials

Search Result 586, Processing Time 0.034 seconds

Effect of Sodium Lignosulfonate Treatment on the Dispersion of CaCO3 in CaCo3/Polypropylene Composite (Sodium Lignosulfonate 표면처리가 탄산칼슘/폴리프로필렌 복합체에서 탄산칼슘의 분산에 미치는 영향)

  • Song, Junyoung;Kwark, Young-Je;Jeong, Youngjin
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.382-387
    • /
    • 2015
  • The dispersion of calcium carbonate ($CaCO_3$) in polypropylene (PP) and the effect of $CaCO_3$ size on the crystallinity of PP were studied. Polymer composite usually suffers from the brittleness when reinforced with inorganic fillers. The problem is generally related to the size and dispersion of fillers. First, the dispersion was studied for the nanosize $CaCO_3$ with 15~40 nm average diameter. To enhance the dispersibility in PP, the surface of the $CaCO_3$ was treated with sodium lignosulfonate (SLS). $CaCO_3$/PP composites were prepared via melt compounding. The $CaCO_3$ coated with more than 3 wt% SLS was uniformly distributed within the PP matrix, while the uncoated $CaCO_3$ formed aggregated structures in the PP. Even with 30 wt%, the SLS-$CaCO_3$ was well dispersed in the PP matrix. Also, the transition enthalpy of $CaCO_3$/PP increased and the full-width of half maximum of the crystallization peak decreased regardless of SLS coating and size of $CaCO_3$. However, the crystallinity of PP was more influenced by nano $CaCO_3$. These results imply that the nano $CaCO_3$ coated with SLS may reduce the brittleness of polymer composites.

Organic-Inorganic Hybrid Materials Technology for Gas Barrier (가스 차단을 위한 유.무기 하이브리드 소재기술)

  • Kim, Ki-Seok;Pa가, Soo-Jin
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.112-117
    • /
    • 2011
  • Recently, high growth potential of barrier materials industry including high performance packing materials was expected with increasing the national income and well-being culture. As high barrier materials, polymer nanocomposites have considerable attractions due to their excellent physical properties compared to conventional composite materials. In general, polymer nanocomposites were consisted of polymer matrix and inorganic fillers, such as layered silicate, carbon nanotubes, and metal- or inorganic nanoparticles. Among these materials, layered silicate which was called as the clay was usually used as nano-fillers because of naturally abundant and most economical and structural properties. Clay-reinforced polymer nanocomposites have various advantages, such as high strength, flammability, gas barrier property, abrasion resistance, and low shrinkage and used for automotive and packing materials. Therefore, in this paper, we focused on the need of gas barrier materials and materials-related technologies.

CNT and CNF reinforced carbon fiber hybrid composites by electrophoresis deposition (전기영동법에 의한 탄소나노튜브 및 탄소나노섬유 강화 탄소섬유 하이브리드 복합재료)

  • Choi, O-Young;Lee, Won-Oh;Lee, Sang-Bok;Yi, Jin-Woo;Kim, Jin-Bong;Choe, Hyeon-Seong;Byun, Joon-Hyung
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.7-12
    • /
    • 2010
  • In order to increase the electrical conductivity and the mechanical properties of carbon fabric composites, multi-walled carbon nanotubes (MWCNTs) and carbon nanofibers (CNFs) were deposited on carbon fabrics by anodic and cathodic electrophoretic deposition (EPD) processes. In the cathodic EPD, carbon nano-particles and nano-sized Cu particles were simultaneously deposited on the carbon fabric, which gave a synergetic effect on the enhancement of properties as well as the degree of deposition. The hybridization of carbon nano-particles and micron-sized carbon fiber significantly improved the through-the-thickness electrical conductivity. In addition, both MWCNTs and CNFs were deposited onto the carbon fabric for multi-scale hybrid composites. Multi-scale deposition improved the through-the-thickness electrical conductivity, compared to the deposition of either MWCNTs or CNFs.

Heating Behavior and Adhesion Property of Epoxy Adhesive with Nano and Micro Sized Fe3O4 Particles (Nano 및 Micro 크기의 Fe3O4 분말이 첨가된 열경화성 에폭시 접착제의 유도가열 및 접착 특성)

  • Hwang, Ji-Won;Im, Tae-Gyu;Choi, Seung-Yong;Lee, Nam-Kyu;Shon, Min-Young
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.55-60
    • /
    • 2020
  • A study on the heating behavior and adhesion property of structural epoxy adhesive through induction heating have been conducted. An adhesive for induction heating was manufactured through mixing with nano and micro sized Fe3O4. From the results, it was observed that induction heating is less affected by adherend (GFRP) thickness than oven heating. The heating rate of Fe3O4 embedded epoxy adhesive using induction heating much higher than that of oven curing process and it is more appreciable when the contents of Fe3O4 increased. Furthermore, adhesion strength increased with increase of Fe3O4 particle contents.

A Study on the E-textiles Dip-Coated with Electrically Conductive Hybrid Nano-Structures

  • Lee, Euna;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.21 no.6
    • /
    • pp.16-30
    • /
    • 2017
  • Currently, e-textile market is rapidly expanding and the emerging area of e-textiles requires electrically conductive threads for diverse applications, including wearable innovative e-textiles that can transmit/receive and display data with a variety of functions. This study introduces hybrid nano-structures which may help increase the conductivity of the textile threads for use in wearable and flexible smart apparels. For this aim, Ag was selected as a conductive material, and yarn treatment was implemented where silver nanowire (AgNW) and graphene flake (GF) hybrid structures overcome the limitations of the AgNW alone. The yarn treatment includes several treatment conditions, e.g., annealing temperature, annealing time, binder material such as polyurethane (PU), coating time, in order to search for the optimum method to form stable conductive nano-scale composite materials as thin film on the surface of textile yarns. Treatedyarns showed improved electrical resistance readings. The functionality of the spandex yarn as a stretchable conductive thread was also demonstrated. When the yarn specimens were treated with colloid of AgNW/GF, relatively good electrical conductivity value was obtained. During the extension and recovery cycles of the treated yarns, the initial resistance values did not deteriorate significantly, since the network of nanowire structure with the support of GF and polyurethane stayed flexible and stable. Through this research, it was found that when one-dimensional structure of AgNW and two-dimensional structure of GF were mixed as colloids and treated on the surface of textile yarns, flexible and stretchable electrical conductor could be formed.

Measurement of Tensile and Bending Properties of Nanohoneycomb Structures (나노허니컴 구조물의 인장 및 굽힘 물성 측정)

  • Jeon, Ji-Hoon;Choi, Duk-Hyun;Lee, Pyung-Soo;Lee, Kun-Hong;Park, Hyun-Chul;Hwang, Woon-Bong
    • Composites Research
    • /
    • v.19 no.6
    • /
    • pp.23-31
    • /
    • 2006
  • We measured mechanical properties, including Young's modulus, effective bending modulus and nominal fracture strength of nanohoneycomb structures using an Atomic Force Microscope(AFM) and a Nano-Universal Testing Machine(UTM). Anodic aluminum oxide(AAO) films are well suited as nanohoneycomb structures because of the simple fabrication process, high aspect ratio, self-ordered hexagonal pore structure, and simple control of pore dimensions. Bending tests were carried out for cantilever structures by pressing AFM tips, and the results were compared with three-point bending tests and tensile tests using a Nano-UTM. One side of the AAO films is clogged by harrier layers, and looks like a face material of conventional sandwich structures. Analysis of this layer showed that it did not influence the bending rigidity, and was just a crack tip. The present results can act as a design guideline in applications of nanohoneycomb structures.

Performance of FRP confined and unconfined geopolymer concrete exposed to sulfate attacks

  • Alzeebaree, Radhwan;Gulsan, Mehmet Eren;Nis, Anil;Mohammedameen, Alaa;Cevik, Abdulkadir
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.201-218
    • /
    • 2018
  • In this study, the effects of magnesium sulfate on the mechanical performance and the durability of confined and unconfined geopolymer concrete (GPC) specimens were investigated. The carbon and basalt fiber reinforced polymer (FRP) fabrics with 1-layer and 3-layers were used to evaluate the performances of the specimens under static and cyclic loading in the ambient and magnesium sulfate environments. In addition, the use of FRP materials as a rehabilitation technique was also studied. For the geopolymerization process of GPC specimens, the alkaline activator has selected a mixture of sodium silicate solution ($Na_2SiO_3$) and sodium hydroxide solution (NaOH) with a ratio ($Na_2SiO_3/NaOH$) of 2.5. In addition to GPC specimens, an ordinary concrete (NC) specimens were also produced as a reference specimens and some of the GPC and NC specimens were immersed in 5% magnesium sulfate solutions. The mechanical performance and the durability of the specimens were evaluated by visual appearance, weight change, static and cyclic loading, and failure modes of the specimens under magnesium sulfate and ambient environments. In addition, the microscopic changes of the specimens due to sulfate attack were also assessed by scanning electron microscopy (SEM) to understand the macroscale behavior of the specimens. Results indicated that geopolymer specimens produced with nano-silica and fly ash showed superior performance than the NC specimens in the sulfate environment. In addition, confined specimens with FRP fabrics significantly improved the compressive strength, ductility and durability resistance of the specimens and the improvement was found higher with the increased number of FRP layers. Specimens wrapped with carbon FRP fabrics showed better mechanical performance and durability properties than the specimens wrapped with basalt FRP fabrics. Both FRP materials can be used as a rehabilitation material in the sulfate environment.

Magnetite Nanoparticles Dispersed in Hybrid Aerogel for Hyperthermia Application (하이퍼써미아 응용을 위한 하이브리드 에어로젤 내 분산된 마그네타이트 나노입자)

  • Lee, Eun-Hee;Choa, Yong-Ho;Kim, Chang-Yeoul
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.362-367
    • /
    • 2012
  • Magnetite nanoparticles(NPs) have been the subject of much interest by researchers owing to their potential use as magnetic carriers in drug targeting and as a tumor treatment in cases of hyperthermia. However, magnetite nanoparticles with 10 nm in diameter easily aggregate and thus create large secondary particles. To disperse magnetite nanoparticles, this study proposes the infiltration of magnetite nanoparticles into hybrid silica aerogels. The feasible dispersion of magnetite is necessary to target tumor cells and to treat hyperthermia. Magnetite NPs have been synthesized by coprecipitation, hydrothermal and thermal decomposition methods. In particular, monodisperse magnetite NPs are known to be produced by the thermal decomposition of iron oleate. In this study, we thermally decomposed iron acetylacetonate in the presence of oleic acid, oleylamine and 1,2 hexadecanediol. We also attempted to disperse magnetite NPs within a mesoporous aerogels. Methyltriethoxysilicate(MTEOS)-based hybrid silica aerogels were synthesized by a supercritical drying method. To incorporate the magnetite nanoparticles into the hybrid aerogels, we devised two methods: adding the synthesized aerogel into a magnetite precursor solution followed by nucleation and crystal growth within the pores of the aerogels, and the infiltration of magnetite nanoparticles synthesized beforehand into aerogel matrices by immersing the aerogels in a magnetite nanoparticle colloid solution. An analysis using a vibrating sample magnetometer showed that approximately 20% of the magnetite nanoparticles were well dispersed in the aerogels. The composite samples showed that heating under an inductive magnetic field to a temperature of $45^{\circ}C$ is possible.

Characterization of Polymer and Nano-MMT-composite as Binder of Recycled-Pet Polymer Concrete (폴리머콘크리트의 결합제로서 PET재활용 폴리머와 나노 MMT 복합체의 특성)

  • Jo, Byung-Wan;Park, Seung-Kook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.292-295
    • /
    • 2004
  • Recently, polymer-clay hybrid materials have received considerable attention from both a fundamental research and application point of view. This organ-inorganic hybrid, which contains a nanoscale dispersion of the layered silicates, is a material with greatly improved thermal and mechanical characteristics. Two classes of nanocomposites were synthesized using an unsaturated polyester resin as the matrix and sodium montmorillonite as well as an organically modified montmorillonite as the reinforcing agents. X -ray diffraction pattern of the composites showed that the interlayer spacing of the modified montmorillonite were exfoliated in polymer matrix. The mechanical properties also supported these findings, since in general, tensile strength, modulus with modified montmorillonite were higher than the corresponding properties of the composites with unmodified montmorillonite. Adding organically modified clay improved the tensile strength of unsaturated polyester by $22\%$ and the tensile modulus of unsaturated polyester was also improved by $34\%$.

  • PDF

A Study on the Structural Properties of Epoxy Based Nanocomposites (나노복합체의 구조적 특성)

  • Lee, Sang-Heon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.990-992
    • /
    • 2011
  • In this paper, epoxy nanocomposites, focusing on the electrical properties of the composites to understand controllers, circuit breakers, bushings and power to apply to the modified instrument was carried out basic research. Composed of composites of this study to develop a power unit to control the dispersion synthesis technology is essential electrical appliances such as electrical properties analysis techniques will also need basic research skills and experience accumulated in this study, several areas of applied technology. In this study, promotion and application of nano-composite material application technology power devices than conventional insulation materials and excellent electrical properties and easy synthesis and high reliability are expected to be practical if you expect that its effects are very large. Therefore, this study has very importance.