• Title/Summary/Keyword: Nano-colloid

Search Result 64, Processing Time 0.024 seconds

Preparation of Multifuctional Wool Fibers with Nano-Silver Colloid (나노 은 콜로이드를 이용한 다기능성 양모섬유의 제조)

  • Ki, Hee-Yeon;Yeo, Sang-Young;Jeong, Sung-Hoon
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.239-240
    • /
    • 2003
  • Recently, the works about antibacterial finishing have been actively investigated in textile industry because of increasing environmental pollution. Wool can easily be an medium for microorganisms growth under proper temperature and humid condition. These microorganisms can result in damages, skin irritations, and infections in wool products. For this reason, the wool materials must be protected against microorganisms in order to suppress their growth and dissemination as well as fiber damage. (omitted)

  • PDF

Sorption Characteristics of Uranium on Goethite and Montmorillonite under Biogeochemical Reducing Conditions (생지화학적 환원조건에서 우라늄의 침철석 및 몬모릴로나이트에 대한 수착 특성)

  • Lee, Seung Yeop;Cho, Hye-Ryun;Baik, Min Hoon;Jung, Euo Chang;Jeong, Jongtae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.263-270
    • /
    • 2012
  • Two kinds of uranium species, oxidized uranium(VI) and reduced uranium(IV), were prepared to be interacted with goethite and montmorillonite to identify sorption characteristic of uranium species, which are very sensitive to the redox-reaction. The reduced uranium was prepared by diluting a substantial uranium(IV) that was concomitantly produced during a sulfate reduction via a sulfate-reducing bacterium. The sorption amount of uranium(IV) by the minerals was relatively lower than that of uranium(VI) because the aqueous uranium(IV) had fine colloidal forms to cause its weak adsorption onto the mineral surfaces. We found that the uranium(IV) phase has a nano-colloid character by the transmission electron microscope, suggesting that the uranium species possibly migrating with the flow of groundwater in underground environments can be the colloidal uranium(IV) as well as the ionic uranium(VI).

High-Transmittance Films Coated from Silica Colloidal Nano-Particles (실리카 콜로이드 나노입자를 이용한 반사 방지막의 제조)

  • Hwang, Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.766-770
    • /
    • 2004
  • High-transmittance film was coated by using spherical silica nano colloids. Silica colloid sol was preservred between two inclined slide glasses by capillary force, and particles were stacked to form a film onto the substrate as the upper glass was sliding. As the sliding speed increased, the thickness of the film decreased and light transmittance varied. The microstructure observed by SEM showed that silica particles were nearly close packed, which enabled the calculation of the effective refractive index of the film. The film thickness calculated from the wavelength of maximum transmittance and the effective refractive index was well coincided with the thickness observed by SEM and measured by profiler. The maximum transmittance of $94.7\%$ was obtained. This means that $97.4\%$ of transmittance or $1.3\%$ of reflectance can be achieved by simple process if both sides of the substrate are coated.

Nano-Sized Mullite(3Al2O3.42SiO2) Colloids Fabricated by Spray Combustion Synthesis (SCS) Technique (분무연소합성(SCS)법에 의한 나노크기 물라이트(3Al2O3.42SiO2) 콜로이드 제조)

  • Lee, Sang-Jin;Jun, Byung-Sei
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.4
    • /
    • pp.297-301
    • /
    • 2004
  • Nano-sized mullite (3Al$_2$O$_3$$.$2SiO$_2$) colloids were prepared by use of the spray combustion method. For combustion reaction, Al(NO$_3$)$_3$$.$9$H_2O$, and CH$_{6}$N$_4$O were used as an oxidizer and a fuel respectively, and then colloidal silica was also added as 2SiO$_2$source for mullite. The temperature of the reaction chamber was kept at 80$0^{\circ}C$ to initiate the ignition of droplets of the mixed precursors. For preventing droplet coagulation, the droplet number concentration was reduced using the metal screen filter, and the residence time of aerosol was kept at 2.5 seconds for laminar flow. The synthesized colloidal particles had an uniform spherical shape with 130 nanometer size and the crystalline phase showed the mullite with stoichiometry in the observations of XRD and TEM.

Fabrication of ZnO and TiO2 Nanocomposite Fibers and Their Photocatalytic Decomposition of Harmful Gases (ZnO와 TiO2 함유 복합나노섬유의 제조와 유해물질분해 성능 평가)

  • Hur, Yoon-Sun;Lee, Seung-Sin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.11
    • /
    • pp.1297-1308
    • /
    • 2011
  • This research investigates the application of ZnO (zinc oxide) nanoparticles and $TiO_2$ (titanium dioxide) nanoparticles to polypropylene nonwoven fabrics via an electrospinning technique for the development of textile materials that can decompose harmful gases. To fabricate uniform ZnO nanocomposite fibers, two types of ZnO nanoparticles were applied. Colloidal $TiO_2$ nanoparticles were chosen to fabricate $TiO_2$ nano- composite fibers. ZnO/poly(vinyl alcohol) (PVA) and $TiO_2$/PVA nanocomposite fibers were electrospun under a variety of conditions that include various feed rates, electric voltages, and capillary diameters. The morphology of electrospun nanocomposite fibers was examined with a field-emission scanning electron micro- scope and a transmission electron microscope. Decomposition efficiency of gaseous materials (formaldehyde, ammonia, toluene, benzene, nitrogen dioxide, sulfur dioxide) by nanocomposite fiber webs with 3wt% nano-particles (ZnO or $TiO_2$) and 7$g/m^2$ web area density was assessed. This study shows that ZnO nanoparticles in colloid were more suitable for fabricating nanocomposite fibers in which nanoparticles are evenly dispersed than in powder. A heat treatment was applied to water-soluble PVA nanofiber webs in order to stabilize the electrospun nanocomposite fibrous structure against dissolution in water. ZnO/PVA and $TiO_2$/PVA nanofiber webs exhibited a range of degradation efficiency for different types of gases. For nitrogen dioxide, the degradation efficiency was 92.2% for ZnO nanocomposite fiber web and 87% for $TiO_2$ nanocomposite fiber web after 20 hours of UV light irradiation. The results indicate that ZnO/PVA and $TiO_2$/PVA nano- composite fiber webs have possible uses in functional textiles that can decompose harmful gases.

A Study on the E-textiles Dip-Coated with Electrically Conductive Hybrid Nano-Structures

  • Lee, Euna;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.21 no.6
    • /
    • pp.16-30
    • /
    • 2017
  • Currently, e-textile market is rapidly expanding and the emerging area of e-textiles requires electrically conductive threads for diverse applications, including wearable innovative e-textiles that can transmit/receive and display data with a variety of functions. This study introduces hybrid nano-structures which may help increase the conductivity of the textile threads for use in wearable and flexible smart apparels. For this aim, Ag was selected as a conductive material, and yarn treatment was implemented where silver nanowire (AgNW) and graphene flake (GF) hybrid structures overcome the limitations of the AgNW alone. The yarn treatment includes several treatment conditions, e.g., annealing temperature, annealing time, binder material such as polyurethane (PU), coating time, in order to search for the optimum method to form stable conductive nano-scale composite materials as thin film on the surface of textile yarns. Treatedyarns showed improved electrical resistance readings. The functionality of the spandex yarn as a stretchable conductive thread was also demonstrated. When the yarn specimens were treated with colloid of AgNW/GF, relatively good electrical conductivity value was obtained. During the extension and recovery cycles of the treated yarns, the initial resistance values did not deteriorate significantly, since the network of nanowire structure with the support of GF and polyurethane stayed flexible and stable. Through this research, it was found that when one-dimensional structure of AgNW and two-dimensional structure of GF were mixed as colloids and treated on the surface of textile yarns, flexible and stretchable electrical conductor could be formed.

An influence on EDC/PPCPs adsorption onto single-walled carbon nanotubes with cationic surfactant (단일벽 탄소나노튜브의 미량유해물질 흡착거동에서 양이온 계면활성제의 영향에 관한 연구)

  • Heo, Jiyong;Lee, Heebum;Han, Jonghun;Son, Mihyang;Her, Namguk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.419-429
    • /
    • 2014
  • Recent studies have been reported the presence of Endocrine Disrupting Compounds, Pharmaceuticals and Personal Care Products (EDC/PPCPs) in surface and wastewater, which could potentially affect to the complicate behavior in coupled presence of nano-colloid particles and surfactants (adsorption, dispersion, and partitioning). In this study, the adsorption of EDC/PPCPs by Single Walled Carbon Nanotubes (SWNTs) as a representative of nano-particles in cationic surfactant solutions were investigated. Hydrophobic interactions (${\pi}-{\pi}$ Electron Donor-Acceptor) have been reported as a potential adsorption mechanisms for EDC/PPCPs onto SWNTs. Generally, the adsorptive capacity of the relatively hydrophobic EDC/PPCPs onto SWNTs decreased in the presence of cationic surfactant (Cetyltrimethyl Ammonium Bromide, CTAB). This study revealed that the competitive adsorption occurred between CTAB cations and EDC/PPCPs by occupying the available SWNT surface (CTAB adsorption onto SWNTs shows five-regime and maximum adsorption capacity of 370.4 mg/g by applying the BET isotherm). The adsorption capacity of $17{\alpha}$-ethinyl estradiol (EE2) on SWNT showed the decrease of 48% in the presence of CTAB. However, the adsorbed naproxen (NAP) surely increased by forming hemimicelles and resulted in a favorable media formation for NAP partition to increase SWNTs adsorption capacity. The adsorbed NAP increased from 24 to 82.9 mg/g after the interaction of CTAB with NAP. The competitive adsorption for EDC/PPCPs onto SWNTs is likely to be a key factor in the presence of cationic surfactant, however, NAP adsorption showed a slight competition through $CH_3-CH_3$ interaction by forming hemimicelles on SWNT surface.

Magnetite Nanoparticles Dispersed in Hybrid Aerogel for Hyperthermia Application (하이퍼써미아 응용을 위한 하이브리드 에어로젤 내 분산된 마그네타이트 나노입자)

  • Lee, Eun-Hee;Choa, Yong-Ho;Kim, Chang-Yeoul
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.362-367
    • /
    • 2012
  • Magnetite nanoparticles(NPs) have been the subject of much interest by researchers owing to their potential use as magnetic carriers in drug targeting and as a tumor treatment in cases of hyperthermia. However, magnetite nanoparticles with 10 nm in diameter easily aggregate and thus create large secondary particles. To disperse magnetite nanoparticles, this study proposes the infiltration of magnetite nanoparticles into hybrid silica aerogels. The feasible dispersion of magnetite is necessary to target tumor cells and to treat hyperthermia. Magnetite NPs have been synthesized by coprecipitation, hydrothermal and thermal decomposition methods. In particular, monodisperse magnetite NPs are known to be produced by the thermal decomposition of iron oleate. In this study, we thermally decomposed iron acetylacetonate in the presence of oleic acid, oleylamine and 1,2 hexadecanediol. We also attempted to disperse magnetite NPs within a mesoporous aerogels. Methyltriethoxysilicate(MTEOS)-based hybrid silica aerogels were synthesized by a supercritical drying method. To incorporate the magnetite nanoparticles into the hybrid aerogels, we devised two methods: adding the synthesized aerogel into a magnetite precursor solution followed by nucleation and crystal growth within the pores of the aerogels, and the infiltration of magnetite nanoparticles synthesized beforehand into aerogel matrices by immersing the aerogels in a magnetite nanoparticle colloid solution. An analysis using a vibrating sample magnetometer showed that approximately 20% of the magnetite nanoparticles were well dispersed in the aerogels. The composite samples showed that heating under an inductive magnetic field to a temperature of $45^{\circ}C$ is possible.

Fabrication of Pre-Exfoliated Clay Masterbatch via Exfoliation-Adsorption of Polystyrene Nanobeads

  • Khvan, Svetlana;Kim, Jun-Kyung;Lee, Sang-Soo
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.51-58
    • /
    • 2007
  • The approach studied in the present work produced an exfoliated state of clay layers via confinement of the charged nano-sized polystyrene (PS) beads within the gallery of swollen pristine clay. It was demonstrated that adsorption of the polymer nanobeads dramatically promotes expansion of the clay gallery. A comparative study of incorporation was conducted by employing organo-modified clay along with two different colloid polymer systems: electrostatically stabilized PS nanobeads and cationic monomer-grafted PS nanobeads. The mechanism of adsorption of the monomer-grafted polymer beads onto clay via cationic exchange between the alkyl ammonium group of the polymer nanobeads and the interlayer sodium cation of the layered silicate was verified by using several techniques. As distinct from the polymer nanobeads formed using conventional miniemulsion polymerization method, competitive adsorption of stabilizing surfactant molecules was be prevented by grafting the surface functional groups into the polymer chain, thereby supporting the observed effective adsorption of the polymer beads. The presence of surface functional groups that support the establishment of strong polymer-clay interactions was suggested to improve the compatibility of the clay with the polymer matrix and eventually play a crucial role in the performance of the final nanocomposites.

Evaluation of thermally and chemically reduced graphene oxide films as counter electrodes on dye-sensitized solar cells

  • Rodriguez-Perez, Manuel;Villanueva-Cab, Julio;Pal, Umapada
    • Advances in nano research
    • /
    • v.5 no.3
    • /
    • pp.231-244
    • /
    • 2017
  • Graphene oxide (GO) was prepared by modified Hummer's method to produce reduced graphene oxide (RGO) following standard thermal and chemical reduction processes. Prepared RGO colloids were utilized to fabricate RGO films over glass and FTO coated glass substrates through drop-coating. A systematic study was performed to evaluate the effect of reduction degree on the optical and electrical properties of the RGO film. We demonstrate that both the reduction process (thermal and chemical) produce RGO films of similar optical and electrical behaviors. However, the RGO films fabricated using chemically reduced GO colloid render better performance in dye sensitized solar cells (DSSCs), when they are used as counter electrodes (CEs). It has been demonstrated that RGO films of optimum thicknesses fabricated using RGO colloids prepared using lower concentration of hydrazine reducer have better catalytic performance in DSSCs due to a better catalytic interaction with redox couple. The better catalytic performance of the RGO films fabricated at optimal hydrazine concentration is associated to their higher available surface area and lower grain boundaries.