Browse > Article
http://dx.doi.org/10.9727/jmsk.2012.25.4.263

Sorption Characteristics of Uranium on Goethite and Montmorillonite under Biogeochemical Reducing Conditions  

Lee, Seung Yeop (Korea Atomic Energy Research Institute)
Cho, Hye-Ryun (Korea Atomic Energy Research Institute)
Baik, Min Hoon (Korea Atomic Energy Research Institute)
Jung, Euo Chang (Korea Atomic Energy Research Institute)
Jeong, Jongtae (Korea Atomic Energy Research Institute)
Publication Information
Journal of the Mineralogical Society of Korea / v.25, no.4, 2012 , pp. 263-270 More about this Journal
Abstract
Two kinds of uranium species, oxidized uranium(VI) and reduced uranium(IV), were prepared to be interacted with goethite and montmorillonite to identify sorption characteristic of uranium species, which are very sensitive to the redox-reaction. The reduced uranium was prepared by diluting a substantial uranium(IV) that was concomitantly produced during a sulfate reduction via a sulfate-reducing bacterium. The sorption amount of uranium(IV) by the minerals was relatively lower than that of uranium(VI) because the aqueous uranium(IV) had fine colloidal forms to cause its weak adsorption onto the mineral surfaces. We found that the uranium(IV) phase has a nano-colloid character by the transmission electron microscope, suggesting that the uranium species possibly migrating with the flow of groundwater in underground environments can be the colloidal uranium(IV) as well as the ionic uranium(VI).
Keywords
uranium; goethite; montmorillonite; sulfate-reducing bacterium; colloid;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Abdelouas, A., Lutze, W., and Nuttall, H.E. (1999) Oxidative dissolution of uraninite precipitated on Navajo Sandstone. Journal of Contaminant Hydrology, 36, 353-375.   DOI   ScienceOn
2 Anderson, R.T., Vrionis, H.A., Ortiz-Bernad, I., Resch, C.T., Long, P.E., Dayvault, R., Karp, K., Marutzky, S., Metzler, D.R., Peacock, A., White, D.C., Lowe, M., and Lovley, D.R. (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Applied Environmental Microbiology, 69, 5884-5891.   DOI   ScienceOn
3 Bargar, J.R., Bernier-Latmani, R., Giammar, D.E., and Tebo, B.M. (2008) Biogenic uraninite nanoparticles and their importance for uranium remediation. Elements, 4, 407-412.   DOI   ScienceOn
4 Catalano, J.G., and Brown, Jr.G.E. (2005) Uranyl adsorption onto montmorillonite: Evaluation of binding sites and carbonate complexation. Geochimica et Cosmochimica Acta, 69, 2995-3005.   DOI   ScienceOn
5 Cho, H.R., Jung, E.C., Park, K.K., Song, K., and Yun, J.I. (2010) Effect of reduction on the stability of Pu (VI) hydrolysis species. Radiochimica Acta, 98, 555-561.   DOI   ScienceOn
6 Crançon, P., Pili, E., and Charlet, L. (2010) Uranium facilitated transport by water-dispersible colloids in field and soil columns. Science of the Total Environment, 408, 2118-2128.   DOI   ScienceOn
7 Dreissig, I., Weiss, S., Henning, C., Bernhard, G., and Zanker, H. (2011) Formation of uranium(IV)-silica colloids at near-neutral pH. Geochimica et Cosmochimica Acta, 75, 352-367.   DOI   ScienceOn
8 Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Duff, M.C., Gorby, Y.A., Li, S.M.W., and Krupka, K.M. (2000) Reduction of U(VI) in goethite (alpha-FeOOH) suspensions by a dissimilatory metal-reducing bacterium. Geochimica et Cosmochimica Acta, 64, 3085- 3098.   DOI   ScienceOn
9 Ikeda-Ohno, A., Hennig, C., Tsushima, S., Scheinost, A.C., Bernhard, G., and Yaita, T. (2009) Speciation and structural study of U(IV) and -(VI) in perchloric and nitric acid solutions. Inorganic Chemistry, 48, 7201-7210.   DOI   ScienceOn
10 Kwon, K.D., Refson, K., Bone, S., Qiao, R., Yang, W. L., Liu, Z., and Sposito, G. (2011) Magnetic ordering in tetragonal FeS: evidence for strong itinerant spin fluctuations. Physical Review B, 83, 064402.   DOI   ScienceOn
11 Lee, S.Y., Baik, M.H., Cho, H., Jung, E.C., Jeong, J. T., Choi, J.W., Lee, Y.B., and Lee, Y.J. Abiotic reduction of uranium by mackinawite (FeS) biogenerated under sulfate-reducing condition. Journal of Radioanalytical and Nuclear Chemistry, (in review).
12 Lee, S.Y., Baik, M.H., and Choi, J.W. (2010) Biogenic formation and growth of uraninite ($UO_{2}$). Environmental Science and Technology, 44, 8409-8414.   DOI   ScienceOn
13 Lovley, D.R., Phillips, E.J.P., Gorby, Y.A., and Landa, E.R. (1991) Microbial reduction of uranium. Nature, 350, 413-416.   DOI   ScienceOn
14 Lee, S.Y., Oh, J.M., Baik, M.H., and Lee, Y.J. (2011a) Change of oxidation/reduction potential of solution by metal-reducing bacteria and roles of biosynthesized mackinawite. Journal of the Mineralogical Society of Korea, 24, 279-287. (Korean with English abstract).   DOI   ScienceOn
15 Lee, S.Y., Oh, J.M., and Baik, M.H. (2011b) Uranium removal by D. baculatum and effects of trace metals. Journal of the Mineralogical Society of Korea, 24, 83-90. (Korean with English absract).   과학기술학회마을   DOI   ScienceOn
16 Lloyd, J.R., and Renshaw, J.C. (2005) Bioremediation of radioactive waste: radionuclide-microbe interactions in laboratory and field-scale studies. Current Opinion in Biotechnology, 16, 254-260.   DOI   ScienceOn
17 Ollila, K., Olin, M., and Lipponen, M. (1996) Solubility and oxidation state of uranium under anoxic conditions ($N_{2}$ atmosphere). Radiochim. Acta, 74, 9-13.
18 Schwertmann, U., and Cornell, R.M. (2000) Iron Oxides in the Laboratory (2nd Ed.), Wiley-VCH, Verlag GmbH, 188p.
19 Silva, R.J., and Nitsche, H. (1995) Actinide environmental chemistry. Radiochimica Acta, 70, 377-396.